مجموعة تكنولاب البهاء جروب

تحاليل وتنقية ومعالجة المياه
 
الرئيسيةالبوابةمكتبة الصورس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول
تنظيف وتطهير وغسيل واعادة تاهيل الخزانات


معمل تكنولاب البهاء جروب
 للتحاليل الكيميائية والطبية
والتشخيص بالنظائر المشعة
 للمخدرات والهرمونات والسموم
 وتحاليل المياه

مجموعة
تكنولاب البهاء جروب
لتصميم محطات الصرف الصناعى والصحى
لمعالجة مياه الصرف الصناعى والصحى
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
دراسات علمية كيميائية



معالجة الغلايات وانظمة البخار المكثف
معالجة ابراج التبريد المفتوحة
معالجة الشيللرات
مجموعة تكنولاب البهاء جروب
اسنشاريين
كيميائيين/طبيين/بكترولوجيين
عقيد دكتور
بهاء بدر الدين محمود
رئيس مجلس الادارة
استشاريون متخصصون فى مجال تحاليل وتنقية ومعالجة المياه
متخصصون فى تصنيع وتصميم كيماويات
معالجة الصرف الصناعى والصحى
حسب كل مشكلة كل على حدة
تصنيع وتحضير كيماويات معالجة المياه الصناعية
مؤتمرات/اجتماعات/محاضرات/فريق عمل متميز
صور من وحدات معالجة المياه


technolab el-bahaa group
TECHNOLAB EL-BAHAA GROUP
EGYPT
FOR
WATER
TREATMENT/PURIFICATION/ANALYSIS
CONSULTANTS
CHEMIST/PHYSICS/MICROBIOLIGIST
 
INDUSTRIAL WATER
WASTE WATER
DRINKING WATER
TANKS CLEANING
 
CHAIRMAN
COLONEL.DR
BAHAA BADR EL-DIN
0117156569
0129834104
0163793775
0174041455

 

 

 

تصميم وانشاء محطات صرف صناعى/waste water treatment plant design

technolab el-bahaa group
egypt
We are a consultants in water treatment with our chemicals as:-
Boiler water treatment chemicals
Condensated steam treatment chemicals
Oxygen scavenger treatment chemicals
Ph-adjustment treatment chemicals
Antiscale treatment chemicals
Anticorrosion treatment chemicals
Open cooling tower treatment chemicals
Chillers treatment chemicals
Waste water treatment chemicals
Drinking water purification chemicals
Swimming pool treatment chemicals
Fuel oil improver(mazote/solar/benzene)
technolab el-bahaa group
egypt
We are consultants in extraction ,analysis and trading the raw materials of mines as:-
Rock phosphate
32%-30%-28%-25%
Kaolin
Quartez-silica
Talcum
Feldspae(potash-sodumic)
Silica sand
Silica fume
Iron oxid ore
Manganese oxid
Cement(42.5%-32.5%)
Ferro manganese
Ferro manganese high carbon

 

water treatment unit design


 

وكلاء لشركات تركية وصينية لتوريد وتركيب وصيانة الغلايات وملحقاتها
solo agent for turkish and chinese companies for boiler production/manufacture/maintance

 

وكلاء لشركات تركية وصينية واوروبية لتصنيع وتركيب وصيانة ابراج التبريد المفتوحة

 

تصميم وتوريد وتركيب الشيللرات
design/production/maintance
chillers
ابراج التبريد المفتوحة
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
قطاع توريد خطوط انتاج المصانع
 
نحن طريقك لاختيار افضل خطوط الانتاج لمصنعكم
سابقة خبرتنا فى اختيار خطوط الانتاج لعملاؤنا
 
1)خطوط انتاج العصائر الطبيعية والمحفوظة والمربات
2)خطوط انتاج الزيوت الطبيعية والمحفوظة
3)خطوط انتاج اللبن الطبيعى والمحفوظ والمبستر والمجفف والبودرة
4)خطوط تعليب وتغليف الفاكهة والخضروات
5)خطوط انتاج المواسير البلاستيك والبى فى سى والبولى ايثيلين
6)خطوط انتاج التراى كالسيوم فوسفات والحبر الاسود
7)خطوط انتاج الاسفلت بانواعه
Coolمحطات معالجة الصرف الصناعى والصحى بالطرق البيولوجية والكيميائية
9)محطات معالجة وتنقية مياه الشرب
10)محطات ازالة ملوحة البحار لاستخدامها فى الشرب والرى
11)الغلايات وخطوط انتاج البخار الساخن المكثف
12)الشيللرات وابراج التبريد المفتوحة وخطوط انتاج البخار البارد المكثف
 
للاستعلام
مجموعة تكنولاب البهاء جروب
0117156569
0129834104
0163793775
 
القاهرة-شارع صلاح سالم-عمارات العبور-عمارة 17 ب
فلا تر رملية/كربونية/زلطيه/حديدية

وحدات سوفتنر لازالة عسر المياه

مواصفات مياه الشرب
Drinking water
acceptable
values

50

colour

acceptable

Taste

nil

Odour

6.5-9.2

ph

 

1 mg/dl

pb

5 mg/dl

as

50 mg/dl

cn

10 mg/dl

cd

0-100mg/dl

hg

8 mg/dl

f

45 mg/dl

N02

1 mg/dl

Fe

5 mg/dl

Mn

5.1 mg/dl

Cu

200 mg/dl

Ca

150 mg/dl

Mg

600 mg/dl

Cl

400 mg/dl

S04

200 mg/dl

Phenol

15 mg/dl

zn

 

 

الحدود المسموح به
ا لملوثات الصرف الصناعى
 بعد المعالجة
Acceptable
values
treated wate water
7-9.5

ph

25-37 c

Temp

40 mg/dl

Suspended solid

35 mg/dl

bod

3 mg/dl

Oil & grase

0.1 mg/dl

hg

0.02 mg/dl

cd

0.1 mg/dl

cn

0.5mg/dl

phenol

1.5 ds/m

conductivity

200 mg/dl

na

120 mg/dl

ca

56 mg/dl

mg

30 mg/dl

k

200 mg/dl

cl

150 mg/dl

S02

0.75 mg/dl

Fe

0.2 mg/dl

Zn

0.5 mg/dl

Cu

0.03 mg/dl

Ni

0.09 mg/dl

Cr

0.53 mg/dl

لb

0.15 mg/dl

pb

 





pipe flocculator+daf
plug flow flocculator
lamella settels

محطات تحلية مياه البحر بطريقة التقطير الومضى على مراحل
MSF+3.jpg (image)
محطات التقطير الومضى لتحلية مياه البحر2[MSF+3.jpg]
some of types of tanks we services
انواع الخزانات التى يتم تنظيفها
ASME Specification Tanks
Fuel Tanks
Storage Tanks
Custom Tanks
Plastic Tanks
Tank Cleaning Equipment
Double Wall Tanks
Septic Tanks
Water Storage Tanks
Fiberglass Reinforced Plastic Tanks
Stainless Steel Tanks
Custom / Septic
مراحل المعالجة الاولية والثانوية والمتقدمة للصرف الصناعى

صور مختلفة
من وحدات وخزانات معالجة الصرف الصناعى
 التى تم تصميمها وتركيبها من قبل المجموعة

صور
 من خزانات الترسيب الكيميائى والفيزيائى
 لوحدات معالجة الصرف الصناعى
المصممة من قبل المحموعة



technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group

technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group




مياه رادياتير اخضر اللون
بريستول تو ايه
انتاج شركة بريستول تو ايه - دمياط الجديدة
مجموعة تكنولاب البهاء جروب

اسطمبات عبوات منتجات شركة بريستول تو ايه-دمياط الجديدة

مياه رادياتير خضراء فوسفورية

من انتاج شركة بريستول تو ايه 

بترخيص من مجموعة تكنولاب البهاء جروب


زيت فرامل وباكم

DOT3



شاطر | 
 

 طرق فصل المياه عن الزيوت المعدنية المستعملة

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin
avatar

عدد المساهمات : 3599
تاريخ التسجيل : 15/09/2009
العمر : 50
الموقع : مصر

مُساهمةموضوع: طرق فصل المياه عن الزيوت المعدنية المستعملة   السبت أغسطس 17, 2013 3:06 pm








 

 Water is ever present in the environment. Unless you live in an arid region, it is a fundamental fact of life.


 Water co-exists in oil in essentially the same way it co-exists in the atmosphere. It starts off in the dissolved phase - dispersed molecule-by-molecule throughout the oil. 


Just like Water present in the air, it cannot be seen in oil, which may appear clear and bright. However, once the saturation point is exceeded, Water is typically present in the emulsified phase creating a milkiness or fog in the oil, just like moist air on a cool day.


 When sufficient Water exists, or when the oil has adequate demulsibility, free Water will collect. 


Because Water is typically heavier than oil, it settles below the oil, at the bottom of sumps and reservoirs. 



The point at which an oil contains the maximum amount of dissolved Water is termed the saturation point.


The saturation point is dependent on the oil’s temperature, age and additive composition.


The higher the temperature, the higher the saturation point and hence more Water held in solution, in the dissolved phase.


This is the same as being able to dissolve more sugar in hot water, than in cold water.


Similarly, the older the oil, the higher the level of Water that can be dissolved.


 This is due to polar by-products of oxidation in the oil, which act as “hooks” holding on to the Water molecules and keeping them in solution.


 Likewise, highly additized oils, like crankcase oils, have a higher saturation point than lightly additized oils like turbine oils, because the additives - many of which are polar - also hold the Water in solution. 


--------------------------------------------------------------------------------------------------------------------------------






The Effects of Water 



 


Water will affect the oil’s base stock, encouraging oxidation, viscosity increase and foaming. 



Water can also affect the additive package through Water washing and hydrolysis, leading to acids and additive depletion. 


Water encourages rust and corrosion and will cause increased wear as a result of aeration, changes in viscosity resulting in film strength failure, hydrogen blistering and embrittlement, and vaporous cavitation. 


Finally, Water is a generator of other contaminants in the oil such as waxes, suspensions, carbon and oxide insolubles and even micro-organisms. 






Water Prevention and Removal Strategies 


Water ingression is either insidious as a result of atmospheric humidity levels or immediate as in Water jet washing or sudden seal failure.



Whatever the source, immediate attention is required to remove it. 


If significant Water ingress has occurred over a prolonged period, detailed oil analysis, such as rust and corrosion inhibition characteristics, remaining useful life measurements, demulsibility and foam suppression and tendency may also be necessary to determine the oil’s suitability for further use. Merely replacing the oil will not cure the ingress source.


Root cause corrective measures are necessary to resolve or limit Water ingression. 





Basic measures to address Water ingression include the use of desiccating breathers, improved seal technology and training maintenance and operations personnel to avoid direct contact with wash down Water on shaft seals and breathers.






Measures to minimize Water ingress should start in the oil store.


Drums and tanks should be sheltered from the environment.


Even indoors, this means they should be sheltered against process Water sprays, fire sprinkler tests and general cleaning sprays.


Open barrels should also be protected with desiccant-style filters, particularly in humid storage areas, to preventWater build up and oil degradation. 



A number of methods or technologies, from inexpensive gravity separation to complex vacuum dehydration, exist to remove water.


 Which technology is most effective will depend on the target dryness level required, the volume of Water that must be removed, the base oil (mineral, synthetic, etc.) and the required flow and processing rate. 


The following is an outline of technologies that can remove Water from oil, together with their relative advantages and disadvantages. 


---------------------------------------------------------------------------------------------------------------------------



Gravity Separation 



As already mentioned, free Water in the system will settle to the bottom of the tank (assuming the specific gravity of Water is greater than the lubricant).


The time it takes the Water to separate will depend on the system’s temperature, as well as the additive formulation, age of the oil and the base oil type.


Some oils are designed to hold Water in suspension rather than to allow it to separate out, making gravity separation a less-than-effective strategy. 



In basic systems, opening the drain valve and allowing the Water to drain off may be sufficient.


The effectiveness of this action, however, will depend upon how long the system was allowed to stand prior to draining the water, whether the temperature was low enough to lower the saturation point dramatically and the oil’s demulsibility characteristics. Lowering the saturation point helps ensure that as much of the Water as possible will exist in the free state. tank may be employed to allow the oil to cool 



The major downside to this method is that it removes only free water, so elements of emulsified and dissolved Water will remain. 


The upside is the low cost of Water removal. 


----------------------------------------------------------------------------------------------------------------



Centrifuge - Spin Your Oil Clean 



The principle of the centrifuge  is to separate the oil’s heavier elements by spinning the oil to create high G-forces -


often in the tens of thousands of Gs. 



The greater the difference in specific gravity between the contaminant and the oil, the more effective the process.


For this reason, centrifuges often work better on low specific gravity and low viscosity oils, like turbine oils, rather than heavier gear type oils.


 In a centrifuge, both free and emulsified Water will be removed; this will depend to some extent on the type of additive package, as some Water will be held in suspension in the oil.


Just like gravity separation, the lower the oil’s temperature, the more effective the Removal process will be, because much of the Water will exist in the emulsified and free states. 



As a tool, a centrifuge is relatively expensive. However, given that it is also a means of removing other heavier contaminants and has a comparatively high throughput compared to other technologies, centrifugal separators are relatively cost effective. 



The downside of centrifuges is that only emulsified and free Water will be removed - although this can be partially overcome by keeping temperatures low. 


--------------------------------------------------------------------------------------------------------------



Absorption Removal 



Typically, most filter media will absorb a small amount of moisture from the oil, resulting in swelling of the media.


This is particularly true for cellulose-based media. In fact, examination of used filters will often indicate if the presence of Water is a concern.


Some filter cartridges with an additional wrap consisting of polymer and desiccants are available. 


These filters are specifically designed to remove Water by absorption and remove both emulsified and free water, as well as solids.


 However, the elements typically have a limited volume capacity and are best fitted to a portable filter cart for minor Water ingression problems.


In fact, when a small gearbox is being fitted with an expansion chamber type breather, it is worthwhile to filter the gearbox with a water-removing element to remove any trace elements of moisture that may condense out on surfaces within the unit when it cools. 





The main disadvantage of absorption Removal is that it has a limited capability for Water Removal per element.


The positive aspect is not just its ability to trap solids, but also that it is a relatively cost-effective means of dealing with small systems that require polishing to remove moisture. 


-----------------------------------------------------------------------------------------------------------------------------



Vacuum the Oil Dry 



The vacuum dehydration process  lowers the partial pressure, which assists in removing the Water from the oil. 


Just like boiling Water on top of Mount Everest, lowering the pressure allows Water (and other volatile materials) to boil at a much lower pressure. 



At the typical pressures used by most vacuum dehydrators (25" to 28" of mercury), Water boils at 120°F to 130°F. 


By heating the oil, typically to 150°F to 160°F, Water is vaporized inside the dehydrator, without causing excessive oil degradation due to thermal and oxidative stress.


In most dehydrators, the air is warmed and dried prior to being passed over the oil, encouraging the Water to transfer from the oil into the air.


To maximize the process, the oil is thinned to obtain the greatest amount of surface area exposure possible.


This is achieved by allowing the oil to pass over a number of surfaces internally in the vacuum chamber, or by creating an umbrella spray within the chamber through which the dry air passes. 



The real benefit of this process is its ability to remove dissolved Water and other low-boiling liquid impurities such as fuels and solvents. 


The Removal of dissolved Water makes it ideal for systems requiring low target levels of moisture.


 It is particularly useful in environments where large volumes of oil are at risk from the process or system, such as in steam turbines or paper mills.


 In fact, for lightly additized oils such as turbine oils and transformer oils, a vacuum dehydrator can remove as much as 80 percent to 90 percent of dissolved water, achieving Water levels as low as a few ppm. 





The main disadvantage of vacuum dehydrators is their cost and comparatively low flow rate. Because of the cost, many companies chose to rent dehydrators on an “as-needed” basis rather than purchase them. 





The main advantage of vacuum dehydrators is that they offer the ability to remove moisture to very low levels. 


The greater the volume of oil and water, and the lower the target moisture level, the more cost-effective vacuum separation becomes. 


--------------------------------------------------------------------------------------------------------



Dehydration by Air Stripping 



An alternative technology to vacuum dehydration is dehydration by air stripping (Figure 4), a process that removes Water as well as gaseous contaminants in the oil.


Not only does it remove free and emulsified water, but also dissolved Water down to less than 100 ppm. 



Because of its ability to degas, it is also suitable for removing hydrocarbons in seal oil systems.


Air stripping works by drawing air or nitrogen gas into a stream of heated oil, which mixes in and absorbs the Water and gasses within the oil.


The oil/air is then expanded to release the air or nitrogen, which takes the impurities with it.


 Generally, the Water removed will be of a reasonable quality, sufficient to allow it to be drained off in the normal network without special disposal requirements.


The exhaust air and gasses are also controlled to minimize the oil vapor released. 





Just like vacuum dehydrators, cost is an issue with air stripping. However, its advantage is that it costs less to maintain than a typical vacuum dehydrator because it has fewer moving parts.


The fact that it can also remove other gaseous impurities, as well as dissolved water, makes air stripping technology an effective alternative to vacuum dehydration. 


-------------------------------------------------------------------------------------------------------



Heat the Oil Dry 



Some applications are self-cleansing because they run at elevated temperatures and consequently, Water is evaporated.


The combustion engine is a perfect example of a self-cleaning application.


However, some settling tanks (see gravity separation) may also include heating elements to assist with Water Removal below the saturation point.


Whether it is best practice to deliberately heat the oil briefly to drive off moisture to maintain oil health is open to debate. 


Allowing the Water to remain in the oil is usually far more damaging than briefly heating the oil. 


Therefore, heater units are available as portable Water Removal systems.


In static systems, like reservoirs, it is important to ensure that the power density of such elements remains below 5W/in2 to minimize thermal stress to the oil. 





The downside to heating oil is that it must be controlled, particularly with mineral oils, to avoid harm. However, the relative cost is less than the centrifugal or vacuum separation technologies, making this an effective Water removing tool in certain circumstances.


The decision about which main Water Removal technology is best will predominantly be based on the volume of oil and the Water to be treated.


 The decision will be further impacted by the need to reach a target moisture level. If target moisture levels are well below the saturation limit, then more complex and expensive methods will be required as necessary if large quanitites of free and emulsified Water are to be removed.

الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://technolabelbahaagp.googoolz.com
 
طرق فصل المياه عن الزيوت المعدنية المستعملة
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مجموعة تكنولاب البهاء جروب :: قسم معالجة وتنقية وتحاليل المياه :: المكتب الاستشارى العلمى-
انتقل الى: