مجموعة تكنولاب البهاء جروب

تحاليل وتنقية ومعالجة المياه
 
الرئيسيةالبوابةمكتبة الصورس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول
تنظيف وتطهير وغسيل واعادة تاهيل الخزانات


معمل تكنولاب البهاء جروب
 للتحاليل الكيميائية والطبية
والتشخيص بالنظائر المشعة
 للمخدرات والهرمونات والسموم
 وتحاليل المياه

مجموعة
تكنولاب البهاء جروب
لتصميم محطات الصرف الصناعى والصحى
لمعالجة مياه الصرف الصناعى والصحى
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
دراسات علمية كيميائية



معالجة الغلايات وانظمة البخار المكثف
معالجة ابراج التبريد المفتوحة
معالجة الشيللرات
مجموعة تكنولاب البهاء جروب
اسنشاريين
كيميائيين/طبيين/بكترولوجيين
عقيد دكتور
بهاء بدر الدين محمود
رئيس مجلس الادارة
استشاريون متخصصون فى مجال تحاليل وتنقية ومعالجة المياه
متخصصون فى تصنيع وتصميم كيماويات
معالجة الصرف الصناعى والصحى
حسب كل مشكلة كل على حدة
تصنيع وتحضير كيماويات معالجة المياه الصناعية
مؤتمرات/اجتماعات/محاضرات/فريق عمل متميز
صور من وحدات معالجة المياه


technolab el-bahaa group
TECHNOLAB EL-BAHAA GROUP
EGYPT
FOR
WATER
TREATMENT/PURIFICATION/ANALYSIS
CONSULTANTS
CHEMIST/PHYSICS/MICROBIOLIGIST
 
INDUSTRIAL WATER
WASTE WATER
DRINKING WATER
TANKS CLEANING
 
CHAIRMAN
COLONEL.DR
BAHAA BADR EL-DIN
0117156569
0129834104
0163793775
0174041455

 

 

 

تصميم وانشاء محطات صرف صناعى/waste water treatment plant design

technolab el-bahaa group
egypt
We are a consultants in water treatment with our chemicals as:-
Boiler water treatment chemicals
Condensated steam treatment chemicals
Oxygen scavenger treatment chemicals
Ph-adjustment treatment chemicals
Antiscale treatment chemicals
Anticorrosion treatment chemicals
Open cooling tower treatment chemicals
Chillers treatment chemicals
Waste water treatment chemicals
Drinking water purification chemicals
Swimming pool treatment chemicals
Fuel oil improver(mazote/solar/benzene)
technolab el-bahaa group
egypt
We are consultants in extraction ,analysis and trading the raw materials of mines as:-
Rock phosphate
32%-30%-28%-25%
Kaolin
Quartez-silica
Talcum
Feldspae(potash-sodumic)
Silica sand
Silica fume
Iron oxid ore
Manganese oxid
Cement(42.5%-32.5%)
Ferro manganese
Ferro manganese high carbon

 

water treatment unit design


 

وكلاء لشركات تركية وصينية لتوريد وتركيب وصيانة الغلايات وملحقاتها
solo agent for turkish and chinese companies for boiler production/manufacture/maintance

 

وكلاء لشركات تركية وصينية واوروبية لتصنيع وتركيب وصيانة ابراج التبريد المفتوحة

 

تصميم وتوريد وتركيب الشيللرات
design/production/maintance
chillers
ابراج التبريد المفتوحة
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
قطاع توريد خطوط انتاج المصانع
 
نحن طريقك لاختيار افضل خطوط الانتاج لمصنعكم
سابقة خبرتنا فى اختيار خطوط الانتاج لعملاؤنا
 
1)خطوط انتاج العصائر الطبيعية والمحفوظة والمربات
2)خطوط انتاج الزيوت الطبيعية والمحفوظة
3)خطوط انتاج اللبن الطبيعى والمحفوظ والمبستر والمجفف والبودرة
4)خطوط تعليب وتغليف الفاكهة والخضروات
5)خطوط انتاج المواسير البلاستيك والبى فى سى والبولى ايثيلين
6)خطوط انتاج التراى كالسيوم فوسفات والحبر الاسود
7)خطوط انتاج الاسفلت بانواعه
Coolمحطات معالجة الصرف الصناعى والصحى بالطرق البيولوجية والكيميائية
9)محطات معالجة وتنقية مياه الشرب
10)محطات ازالة ملوحة البحار لاستخدامها فى الشرب والرى
11)الغلايات وخطوط انتاج البخار الساخن المكثف
12)الشيللرات وابراج التبريد المفتوحة وخطوط انتاج البخار البارد المكثف
 
للاستعلام
مجموعة تكنولاب البهاء جروب
0117156569
0129834104
0163793775
 
القاهرة-شارع صلاح سالم-عمارات العبور-عمارة 17 ب
فلا تر رملية/كربونية/زلطيه/حديدية

وحدات سوفتنر لازالة عسر المياه

مواصفات مياه الشرب
Drinking water
acceptable
values

50

colour

acceptable

Taste

nil

Odour

6.5-9.2

ph

 

1 mg/dl

pb

5 mg/dl

as

50 mg/dl

cn

10 mg/dl

cd

0-100mg/dl

hg

8 mg/dl

f

45 mg/dl

N02

1 mg/dl

Fe

5 mg/dl

Mn

5.1 mg/dl

Cu

200 mg/dl

Ca

150 mg/dl

Mg

600 mg/dl

Cl

400 mg/dl

S04

200 mg/dl

Phenol

15 mg/dl

zn

 

 

الحدود المسموح به
ا لملوثات الصرف الصناعى
 بعد المعالجة
Acceptable
values
treated wate water
7-9.5

ph

25-37 c

Temp

40 mg/dl

Suspended solid

35 mg/dl

bod

3 mg/dl

Oil & grase

0.1 mg/dl

hg

0.02 mg/dl

cd

0.1 mg/dl

cn

0.5mg/dl

phenol

1.5 ds/m

conductivity

200 mg/dl

na

120 mg/dl

ca

56 mg/dl

mg

30 mg/dl

k

200 mg/dl

cl

150 mg/dl

S02

0.75 mg/dl

Fe

0.2 mg/dl

Zn

0.5 mg/dl

Cu

0.03 mg/dl

Ni

0.09 mg/dl

Cr

0.53 mg/dl

لb

0.15 mg/dl

pb

 





pipe flocculator+daf
plug flow flocculator
lamella settels

محطات تحلية مياه البحر بطريقة التقطير الومضى على مراحل
MSF+3.jpg (image)
محطات التقطير الومضى لتحلية مياه البحر2[MSF+3.jpg]
some of types of tanks we services
انواع الخزانات التى يتم تنظيفها
ASME Specification Tanks
Fuel Tanks
Storage Tanks
Custom Tanks
Plastic Tanks
Tank Cleaning Equipment
Double Wall Tanks
Septic Tanks
Water Storage Tanks
Fiberglass Reinforced Plastic Tanks
Stainless Steel Tanks
Custom / Septic
مراحل المعالجة الاولية والثانوية والمتقدمة للصرف الصناعى

صور مختلفة
من وحدات وخزانات معالجة الصرف الصناعى
 التى تم تصميمها وتركيبها من قبل المجموعة

صور
 من خزانات الترسيب الكيميائى والفيزيائى
 لوحدات معالجة الصرف الصناعى
المصممة من قبل المحموعة



technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group

technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group




مياه رادياتير اخضر اللون
بريستول تو ايه
انتاج شركة بريستول تو ايه - دمياط الجديدة
مجموعة تكنولاب البهاء جروب

اسطمبات عبوات منتجات شركة بريستول تو ايه-دمياط الجديدة

مياه رادياتير خضراء فوسفورية

من انتاج شركة بريستول تو ايه 

بترخيص من مجموعة تكنولاب البهاء جروب


زيت فرامل وباكم

DOT3



شاطر | 
 

 مواصفات انابيب البخار للغلايات

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin
avatar

عدد المساهمات : 3587
تاريخ التسجيل : 15/09/2009
العمر : 50
الموقع : مصر

مُساهمةموضوع: مواصفات انابيب البخار للغلايات   الخميس مارس 27, 2014 3:25 am

موصفات انابيب البخار

 Pipes and Pipe Sizing

Standards and wall thickness
There are a number of piping standards in existence around the world, but arguably the most global are those derived by the American Petroleum Institute (API), where Pipes are categorised in schedule numbers.



These schedule numbers bear a relation to the pressure rating of the piping. There are eleven Schedules ranging from the lowest at 5 through 10, 20, 30, 40, 60, 80, 100, 120, 140 to schedule No. 160. For nominal size piping 150 mm and smaller, Schedule 40 (sometimes called 'standard weight') is the lightest that would be specified for steam applications. 



Regardless of schedule number, Pipes of a particular size all have the same outside diameter (not withstanding manufacturing tolerances). As the schedule number increases, the wall thickness increases, and the actual bore is reduced. For example:

  • A 100 mm Schedule 40 Pipe has an outside diameter of 114.30 mm, a wall thickness of 6.02 mm, giving a bore of 102.26 mm.


  • A 100 mm Schedule 80 Pipe has an outside diameter of 114.30 mm, a wall thickness of 8.56 mm, giving a bore of 97.18 mm.



Only Schedules 40 and 80 cover the full range from 15 mm up to 600 mm nominal sizes and are the most commonly used schedule for steam Pipeinstallations. 



This Tutorial considers Schedule 40 pipework as covered in BS 1600.



Tables of schedule numbers can be obtained from BS 1600 which are used as a reference for the nominal Pipe size and wall thickness in millimetres. Table 10.2.1 compares the actual bore sizes of different sized pipes, for different schedule numbers.



In mainland Europe, Pipe is manufactured to DIN standards, and DIN 2448 Pipe is included in Table 10.2.1.

 


Table 10.2.1 Comparison of Pipe standards and actual bore diameters. 

In the United Kingdom, piping to EN 10255, (steel tubes and tubulars suitable for screwing to BS 21 threads) is also used in applications where the Pipe is screwed rather than flanged. They are commonly referred to as 'Blue Band' and 'Red Band'; this being due to their banded identification marks. The different colours refer to particular grades of pipe:

  • Red Band, being heavy grade, is commonly used for steam Pipe applications.


  • Blue Band, being medium grade, is commonly used for air distribution systems, although it is sometimes used for low-pressure steam systems.



The coloured bands are 50 mm wide, and their positions on the Pipe denote its length. Pipes less than 4 metres in length only have a coloured band at one end, while Pipes of 4 to 7 metres in length have a coloured band at either end.
 



Fig. 10.2.1 Red band, branded pipe, - heavy grade 

 


Fig. 10.2.2 Blue band, branded pipe, - medium grade, between 4-7 metres in length 

الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://technolabelbahaagp.googoolz.com
Admin
Admin
avatar

عدد المساهمات : 3587
تاريخ التسجيل : 15/09/2009
العمر : 50
الموقع : مصر

مُساهمةموضوع: مواد تصنيع انابيب البخار واحجامها   الخميس مارس 27, 2014 3:27 am

Pipe material


Pipes for steam systems are commonly manufactured from carbon steel to ANSI B 16.9 A106. The same material may be used for condensate lines, although copper tubing is preferred in some industries.



For high temperature superheated steam mains, additional alloying elements, such as chromium and molybdenum, are included to improve tensile strength and creep resistance at high temperatures.



Typically, Pipes are supplied in 6 metre lengths.





Pipeline sizing



The objective of the steam distribution system is to supply steam at the correct pressure to the point of use. It follows, therefore, that pressure drop through the distribution system is an important feature.



Liquids

Bernoulli's Theorem (Daniel Bernoulli 1700 - 1782) is discussed in Block 4 - Flowmetering. D'Arcy (D'Arcy Thompson 1860 - 1948) added that for fluid flow to occur, there must be more energy at Point 1 than Point 2 (see Figure 10.2.3). The difference in energy is used to overcome frictional resistance between the Pipe and the flowing fluid.

 



Fig. 10.2.3 Friction in Pipes 

Bernoulli relates changes in the total energy of a flowing fluid to energy dissipation expressed either in terms of a head loss hf (m) or specific energy loss g hf (J/kg). This, in itself, is not very useful without being able to predict the pressure losses that will occur in particular circumstances.



Here, one of the most important mechanisms of energy dissipation within a flowing fluid is introduced, that is, the loss in total mechanical energy due to friction at the wall of a uniform Pipe carrying a steady flow of fluid.



The loss in the total energy of fluid flowing through a circular Pipe must depend on:



L=The length of the Pipe (m)D=The Pipe diameter (m)u=The mean velocity of the fluid flow (m/s)m=The dynamic viscosity of the fluid (kg/m s=Pa s)ρ=The fluid density (kg/m3)ks=The roughness of the Pipe wall* (m)




*Since the energy dissipation is associated with shear stress at the Pipe wall, the nature of the wall surface will be influential, as a smooth surface will interact with the fluid in a different way than a rough surface.

All these variables are brought together in the D'Arcy-Weisbach equation (often referred to as the D'Arcy equation), and shown as Equation 10.2.1. This equation also introduces a dimensionless term referred to as the friction factor, which relates the absolute Pipe roughness to the density, velocity and viscosity of the fluid and the Pipe diameter.



The term that relates fluid density, velocity and viscosity and the Pipe diameter is called the Reynolds number, named after Osborne Reynolds (1842-1912, of Owens College, Manchester, United Kingdom), who pioneered this technical approach to energy losses in flowing fluids circa 1883.

The D'Arcy equation (Equation 10.2.1):

 

Equation 10.2.1 

Where:



hf=Head loss to friction (m)f=Friction factor (dimensionless)L=Lengthu=Flow velocity (m/s)g=Gravitational constant (9.81 m/s2)D=Pipe diameter (m)



Interesting point

Readers in some parts of the world may recognise the D'Arcy equation in a slightly different form, as shown in Equation 10.2.2. Equation 10.2.2 is similar to Equation 10.2.1 but does not contain the constant 4.

 


Equation 10.2.2 

The reason for the difference is the type of friction factor used. It is essential that the right version of the D'Arcy equation be used with the selected friction factor. Matching the wrong equation to the wrong friction factor will result in a 400% error and it is therefore important that the correct combination of equation and friction factor is utilised. Many textbooks simply do not indicate which friction factors are defined, and a judgement must sometimes be based on the magnitudes quoted.



Equation 10.2.2 tends to be used by those who traditionally work in Imperial units, and still tends to be used by practitioners in the United States and Pacific rim regions even when metric Pipe sizes are quoted. Equation 10.2.1 tends to be used by those who traditionally work in SI units and tends more to be used by European practitioners. For the same Reynolds number and relative roughness, the 'Imperial based friction factor' will be exactly four times larger than the 'SI based friction factor'.



Friction factors can be determined either from a Moody chart or, for turbulent flows, can be calculated from Equation 10.2.3, a development of the Colebrook - White formula.

 


Equation 10.2.3 

Where:



f=Friction factor (Relates to the SI Moody chart)ks=Absolute Pipe roughness (m)D=

Pipe bore (m)Re=Reynolds number (dimensionless)



However, Equation 10.2.3 is difficult to use because the friction factor appears on both sides of the equation, and it is for this reason that manual calculations are likely to be carried out by using the Moody chart.



On an SI style Moody chart, the friction factor scale might typically range from 0.002 to 0.02, whereas on an Imperial style Moody chart, this scale might range from 0.008 to 0.08. 



As a general rule, for turbulent flow with Reynolds numbers between 4000 and 100000, 'SI based' friction factors will be of the order suggested by Equation 10.2.4, whilst 'Imperial based' friction factors will be of the order suggested by Equation 10.2.5.

 Equation 10.2.4 - 'SI based' friction factors 
 Equation 10.2.5 - 'Imperial based' friction factors 

The friction factor used will determine whether the D'Arcy Equation 10.2.1 or 10.2.2 is used. 

For 'SI based' friction factors, use Equation 10.2.1; for 'Imperial based' friction factors, use 

Equation 10.2.2.

Example 10.2.1 - Water pipe

Determine the velocity, friction factor and the difference in pressure between two points 

1 km apart in a 150 mm constant bore horizontal pipework system if the water flowrate is 

45 m3/h at 15°C. 

 

In essence, the friction factor depends on the Reynolds number (Re) of the flowing liquid and the relative roughness (kS/d) of the inside of the pipe; the former calculated from Equation 10.2.6, and the latter from Equation 10.2.7.



Reynolds number (Re)

 


Equation 10.2.6 

Where:



Re=Reynolds numberρ=Density of water=1000 kg/m3u=Velocity of water=0.71 m/sD=Pipe diameter=0.15 mm=Dynamic viscosity of water (at 15°C)=1.138 x 10-3 kg/m s (from steam tables)



From Equation 10.2.6:

 

The Pipe roughness or 'ks' value (often quoted as 'e' in some texts) is taken from standard tables, and for 'commercial steel pipe' would generally be taken as 0.000045 metres.



From this the relative roughness is determined (as this is what the Moody chart requires).

 


Equation 10.2.7 

From Equation 10.2.7:

 

The friction factor can now be determined from the Moody chart and the friction head loss calculated from the relevant D'Arcy Equation.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://technolabelbahaagp.googoolz.com
Admin
Admin
avatar

عدد المساهمات : 3587
تاريخ التسجيل : 15/09/2009
العمر : 50
الموقع : مصر

مُساهمةموضوع: دورة البخار   الخميس مارس 27, 2014 3:30 am

Steam





Oversized pipework means:

  • Pipes, valves, fittings, etc. will be more expensive than necessary.


  • Higher installation costs will be incurred, including support work, insulation, etc.


  • For steam Pipes a greater volume of condensate will be formed due to the greater heat loss. This, in turn, means that either:




  • More steam trapping is required, or


  • Wet steam is delivered to the point of use.



In a particular example:

  • The cost of installing 80 mm steam pipework was found to be 44% higher than the cost of 50 mm pipework, which would have had adequate capacity.


  • The heat lost by the insulated pipework was some 21% higher from the 80 mm pipeline than it would have been from the 50 mm pipework. Any non-insulated parts of the 80 mm Pipe would lose 50% more heat than the 50 mm pipe, due to the extra heat transfer surface area.






Undersized pipework means:

  • A lower pressure may only be available at the point of use. This may hinder equipment performance due to only lower pressure steam being available.


  • There is a risk of steam starvation.


  • There is a greater risk of erosion, waterhammer and noise due to the inherent increase in steam velocity.



As previously mentioned, the friction factor (f) can be difficult to determine, and the calculation itself is time consuming especially for turbulent steam flow. As a result, there are numerous graphs, tables and slide rules available for relating steam Pipe sizes to flowrates and pressure drops. 



One pressure drop Sizing method, which has stood the test of time, is the 'pressure factor' method. A table of pressure factor values is used in Equation 10.2.2 to determine the pressure drop for a particular installation.

 


Equation 10.2.8 

Where:

F = Pressure factor

P1 = Factor at inlet pressure

P2 = Factor at a distance of L metres

L = Equivalent length of Pipe (m)



Example 10.2.2

Consider the system shown in Figure 10.2.6, and determine the Pipe size required from the boiler to the unit heater branch line. Unit heater steam load = 270 kg/h.

 



Fig. 10.2.6 System used to illustrate Example 10.2.2 

Although the unit heater only requires 270 kg/h, the boiler has to supply more than this due to heat losses from the pipe.




The allowance for Pipe fittings

The length of travel from the boiler to the unit heater is known, but an allowance must be included for the additional frictional resistance of the fittings. This is generally expressed in terms of 'equivalent Pipe length'. If the size of the Pipe is known, the resistance of the fittings can be calculated. As the Pipe size is not yet known in this example, an addition to the equivalent length can be used based on experience.

  • If the Pipe is less than 50 metres long, add an allowance for fittings of 5%.


  • If the Pipe is over 100 metres long and is a fairly straight run with few fittings, an allowance for fittings of 10% would be made.


  • A similar Pipe length, but with more fittings, would increase the allowance towards 20%.



In this instance, revised length = 150 m + 10% = 165 m




The allowance for the heat losses from the pipe

The unit heater requires 270 kg/h of steam; therefore the Pipe must carry this quantity plus the quantity of steam condensed by heat losses from the main. As the size of the main is yet to be determined, the true calculations cannot be made, but, assuming that the main is insulated, it may be reasonable to add 3.5% of the steam load per 100 m of the revised length as heat losses.



In this instance, the additional allowance =

 

Revised boiler load = 270 kg/h + 5.8% = 286 kg/h



From Table 10.2.2 (an extract from the complete pressure factor table, Table 10.2.5, which can be found in the Appendix at the end of this Tutorial) 'F' can be determined by finding the pressure factors P1 and P2, and substituting them into Equation 10.2.8.

 



Table 10.2.2 Extract from pressure factor table (Table 10.2.5) 

From the pressure factor table (see Table 10.2.2):



P1 (7.0 bar g) = 56.38



P2 (6.6 bar g) = 51.05



Substituting these pressure factors (P1 and P2) into Equation 10.2.8 will determine the value for 'F':

 Equation 10.2.8. 
 

Following down the left-hand column of the pipeline capacity and pressure drop factors table (Table 10.2.6 - Extract shown in Table 10.2.3); the nearest two readings around the requirement of 0.032 are 0.030 and 0.040. The next lower factor is always selected; in this case, 0.030.

 



Table 10.2.3 Extract from pipeline capacity and pressure factor table (Table 10.2.6) 

Although values can be interpolated, the table does not conform exactly to a straight-line graph, so interpolation cannot be absolutely correct. Also, it is bad practice to size any Pipe up to the limit of its capacity, and it is important to have some leeway to allow for the inevitable future changes in design. 



From factor 0.030, by following the row of figures to the right it will be seen that:

  • A 40 mm Pipe will carry 229.9 kg/h.


  • A 50 mm Pipe will carry 501.1 kg/h.



Since the application requires 286 kg/h, the 50 mm Pipe would be selected.



Having sized the Pipe using the pressure drop method, the velocity can be checked if required.

 

Where:

 

Viewed in isolation, this velocity may seem low in comparison with maximum permitted velocities. However, this steam main has been sized to limit pressure drop, and the next smaller Pipe size would have given a velocity of over 47 m/s, and a final pressure less than the requirement of 6.6 bar g, which is unacceptable.



As can be seen, this procedure is fairly complex and can be simplified by using the nomogram shown in Figure 10.2.9 (in the Appendix of this Tutorial). The method of use is explained in Example 10.2.3.




Example 10.2.3

Using the data from Example 10.2.2, determine the pressure drop using the nomogram shown in Figure 10.2.7.



Inlet pressure = 7 bar g 



Steam flowrate = 286 kg/h



Minimum allowable P2 = 6.6 bar g

[url=http://arab-training.net/vb/t8021.html]
[/url]
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://technolabelbahaagp.googoolz.com
Admin
Admin
avatar

عدد المساهمات : 3587
تاريخ التسجيل : 15/09/2009
العمر : 50
الموقع : مصر

مُساهمةموضوع: كيف تحسب حجم مواسير البخار   الخميس مارس 27, 2014 3:32 am




Information required to calculate the required Pipe size



u = Flow velocity (m/s)



vg = Specific volume (m3/kg)


s = Mass flowrate (kg/s)

 = Volumetric flowrate (m3/s) = ms x vg


From this information, the cross sectional area (A) of the Pipe can be calculated:

 

Rearranging the formula to give the diameter of the Pipe (D) in metres:

 

Example 10.2.4

A process requires 5 000 kg/h of dry saturated steam at 7 bar g. For the flow velocity not to exceed 25 m/s, determine the Pipe size.



Where

 

Therefore, using:

 

Since the steam velocity must not exceed 25 m/s, the Pipe size must be at least 130 mm; the nearest commercially available size, 150 mm, would be selected.



Again, a nomogram has been created to simplify this process, see Figure 10.2.6.



Example 10.2.5

Using the information from Example 10.2.4, use Figure 10.2.6 to determine the minimum acceptable Pipe size




Inlet pressure=7 bar gSteam flowrate=5000 kg/hMaximum velocity=25 m/s




Method:

  • Draw a horizontal line from the saturation temperature line at 7 bar g (Point A) on the pressure scale to the steam mass flowrate of 5 000 kg/h (Point B).


  • From point B, draw a vertical line to the steam velocity of 25 m/s (Point C). From point C, draw a horizontal line across the Pipe diameter scale (PointD).


  • Pipe with a bore of 130 mm is required; the nearest commercially available size, 150 mm, would be selected.





Fig. 10.2.8 Steam pipeline Sizing chart - Velocity 



Sizing Pipes for superheated steam duty

Superheated steam can be considered as a dry gas and therefore carries no moisture. Consequently there is no chance of Pipe erosion due to suspended water droplets, and steam velocities can be as high as 50 to 70 m/s if the pressure drop permits this. The nomograms in Figures 10.2.5 and 10.2.6 can also be used for superheated steam applications.



Example 10.2.6

Utilising the waste heat from a process, a boiler/superheater generates 30 t/h of superheated steam at 50 bar g and 450°C for export to a neighbouring power station. If the velocity is not to exceed 50 m/s, determine:

  1. The Pipe size based on velocity (use Figure 10.2.8).


  2. The pressure drop if the Pipe length, including allowances, is 200 m (use Figure 10.2.9).



Part 1

  • Using Figure 10.2.8, draw a vertical line from 450°C on the temperature axis until it intersects the 50 bar line (Point A).


  • From point A, project a horizontal line to the left until it intersects the steam 'mass flowrate' scale of 30 000 kg/h (30 t/h) (Point B).


  • From point B, project a line vertically upwards until it intersects 50 m/s on the 'steam velocity' scale (Point C).


  • From Point C, project a horizontal line to the right until it intersects the 'inside Pipe diameter' scale.



The 'inside Pipe diameter' scale recommends a Pipe with an inside diameter of about 120 mm. From Table 10.2.1 and assuming that the Pipe will be Schedule 80 pipe, the nearest size would be 150 mm, which has a bore of 146.4 mm.



Part 2

  • Using Figure 10.2.7, draw a vertical line from 450°C on the temperature axis until it intersects the 50 bar line (Point A).


  • From point A, project a horizontal line to the right until it intersects the 'steam mass flowrate' scale of 30 000 kg/h (30 t/h) (Point B).


  • From point B, project a line vertically upwards until it intersects the 'inside Pipe diameter' scale of (approximately) 146 mm (Point C).


  • From Point C, project a horizontal line to the left until it intersects the 'pressure loss bar/100 m' scale (Point D).



The 'pressure loss bar/100 m' scale reads about 0.9 bar/100 m. The Pipe length in the example is 200 m, so the pressure drop is:
 
This pressure drop must be acceptable at the process plant.



Using formulae to establish steam flowrate on pressure drop

Empirical formulae exist for those who prefer to use them. Equations 10.2.9 and 10.2.10 are shown below. These have been tried and tested over many years, and which appear to give results close to the pressure factor method. The advantage of using these formulae is that they can be programmed into a scientific calculator, or a spreadsheet, and consequently used without the need to look up tables and charts. Equation 10.2.10 requires the specific volume of steam to be known, which means it is necessary to look up this value from a steam table. Also, Equation 10.2.10 should be restricted to a maximum Pipelength of 200 metres.



Pressure drop formula 1

 


Equation 10.2.9 

Where:



P1=Upsteam pressure (bar a)P2=Downstream pressure (bar a)L=Length of Pipe (m)s=Mass flowrate (kg/h)D=Pipe diameter (mm)



Pressure drop formula 2 (Maximum Pipe length: 200 metres)

 Equation 10.2.10 

Where:



DP=Pressure drop (bar)L=Length of pipevg=Specific volume of steam (m3/kg)=Mass flowrate(kg/h)D=Pipe diameter (mm)
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://technolabelbahaagp.googoolz.com
 
مواصفات انابيب البخار للغلايات
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مجموعة تكنولاب البهاء جروب :: قسم معالجة وتنقية وتحاليل المياه :: معالجة الغلايات وانظمة البخار المكثف-
انتقل الى: