مجموعة تكنولاب البهاء جروب

تحاليل وتنقية ومعالجة المياه
 
الرئيسيةالبوابةمكتبة الصورس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول
تنظيف وتطهير وغسيل واعادة تاهيل الخزانات


معمل تكنولاب البهاء جروب
 للتحاليل الكيميائية والطبية
والتشخيص بالنظائر المشعة
 للمخدرات والهرمونات والسموم
 وتحاليل المياه

مجموعة
تكنولاب البهاء جروب
لتصميم محطات الصرف الصناعى والصحى
لمعالجة مياه الصرف الصناعى والصحى
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
دراسات علمية كيميائية



معالجة الغلايات وانظمة البخار المكثف
معالجة ابراج التبريد المفتوحة
معالجة الشيللرات
مجموعة تكنولاب البهاء جروب
اسنشاريين
كيميائيين/طبيين/بكترولوجيين
عقيد دكتور
بهاء بدر الدين محمود
رئيس مجلس الادارة
استشاريون متخصصون فى مجال تحاليل وتنقية ومعالجة المياه
متخصصون فى تصنيع وتصميم كيماويات
معالجة الصرف الصناعى والصحى
حسب كل مشكلة كل على حدة
تصنيع وتحضير كيماويات معالجة المياه الصناعية
مؤتمرات/اجتماعات/محاضرات/فريق عمل متميز
صور من وحدات معالجة المياه


technolab el-bahaa group
TECHNOLAB EL-BAHAA GROUP
EGYPT
FOR
WATER
TREATMENT/PURIFICATION/ANALYSIS
CONSULTANTS
CHEMIST/PHYSICS/MICROBIOLIGIST
 
INDUSTRIAL WATER
WASTE WATER
DRINKING WATER
TANKS CLEANING
 
CHAIRMAN
COLONEL.DR
BAHAA BADR EL-DIN
0117156569
0129834104
0163793775
0174041455

 

 

 

تصميم وانشاء محطات صرف صناعى/waste water treatment plant design

technolab el-bahaa group
egypt
We are a consultants in water treatment with our chemicals as:-
Boiler water treatment chemicals
Condensated steam treatment chemicals
Oxygen scavenger treatment chemicals
Ph-adjustment treatment chemicals
Antiscale treatment chemicals
Anticorrosion treatment chemicals
Open cooling tower treatment chemicals
Chillers treatment chemicals
Waste water treatment chemicals
Drinking water purification chemicals
Swimming pool treatment chemicals
Fuel oil improver(mazote/solar/benzene)
technolab el-bahaa group
egypt
We are consultants in extraction ,analysis and trading the raw materials of mines as:-
Rock phosphate
32%-30%-28%-25%
Kaolin
Quartez-silica
Talcum
Feldspae(potash-sodumic)
Silica sand
Silica fume
Iron oxid ore
Manganese oxid
Cement(42.5%-32.5%)
Ferro manganese
Ferro manganese high carbon

 

water treatment unit design


 

وكلاء لشركات تركية وصينية لتوريد وتركيب وصيانة الغلايات وملحقاتها
solo agent for turkish and chinese companies for boiler production/manufacture/maintance

 

وكلاء لشركات تركية وصينية واوروبية لتصنيع وتركيب وصيانة ابراج التبريد المفتوحة

 

تصميم وتوريد وتركيب الشيللرات
design/production/maintance
chillers
ابراج التبريد المفتوحة
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
قطاع توريد خطوط انتاج المصانع
 
نحن طريقك لاختيار افضل خطوط الانتاج لمصنعكم
سابقة خبرتنا فى اختيار خطوط الانتاج لعملاؤنا
 
1)خطوط انتاج العصائر الطبيعية والمحفوظة والمربات
2)خطوط انتاج الزيوت الطبيعية والمحفوظة
3)خطوط انتاج اللبن الطبيعى والمحفوظ والمبستر والمجفف والبودرة
4)خطوط تعليب وتغليف الفاكهة والخضروات
5)خطوط انتاج المواسير البلاستيك والبى فى سى والبولى ايثيلين
6)خطوط انتاج التراى كالسيوم فوسفات والحبر الاسود
7)خطوط انتاج الاسفلت بانواعه
Coolمحطات معالجة الصرف الصناعى والصحى بالطرق البيولوجية والكيميائية
9)محطات معالجة وتنقية مياه الشرب
10)محطات ازالة ملوحة البحار لاستخدامها فى الشرب والرى
11)الغلايات وخطوط انتاج البخار الساخن المكثف
12)الشيللرات وابراج التبريد المفتوحة وخطوط انتاج البخار البارد المكثف
 
للاستعلام
مجموعة تكنولاب البهاء جروب
0117156569
0129834104
0163793775
 
القاهرة-شارع صلاح سالم-عمارات العبور-عمارة 17 ب
فلا تر رملية/كربونية/زلطيه/حديدية

وحدات سوفتنر لازالة عسر المياه

مواصفات مياه الشرب
Drinking water
acceptable
values

50

colour

acceptable

Taste

nil

Odour

6.5-9.2

ph

 

1 mg/dl

pb

5 mg/dl

as

50 mg/dl

cn

10 mg/dl

cd

0-100mg/dl

hg

8 mg/dl

f

45 mg/dl

N02

1 mg/dl

Fe

5 mg/dl

Mn

5.1 mg/dl

Cu

200 mg/dl

Ca

150 mg/dl

Mg

600 mg/dl

Cl

400 mg/dl

S04

200 mg/dl

Phenol

15 mg/dl

zn

 

 

الحدود المسموح به
ا لملوثات الصرف الصناعى
 بعد المعالجة
Acceptable
values
treated wate water
7-9.5

ph

25-37 c

Temp

40 mg/dl

Suspended solid

35 mg/dl

bod

3 mg/dl

Oil & grase

0.1 mg/dl

hg

0.02 mg/dl

cd

0.1 mg/dl

cn

0.5mg/dl

phenol

1.5 ds/m

conductivity

200 mg/dl

na

120 mg/dl

ca

56 mg/dl

mg

30 mg/dl

k

200 mg/dl

cl

150 mg/dl

S02

0.75 mg/dl

Fe

0.2 mg/dl

Zn

0.5 mg/dl

Cu

0.03 mg/dl

Ni

0.09 mg/dl

Cr

0.53 mg/dl

لb

0.15 mg/dl

pb

 





pipe flocculator+daf
plug flow flocculator
lamella settels

محطات تحلية مياه البحر بطريقة التقطير الومضى على مراحل
MSF+3.jpg (image)
محطات التقطير الومضى لتحلية مياه البحر2[MSF+3.jpg]
some of types of tanks we services
انواع الخزانات التى يتم تنظيفها
ASME Specification Tanks
Fuel Tanks
Storage Tanks
Custom Tanks
Plastic Tanks
Tank Cleaning Equipment
Double Wall Tanks
Septic Tanks
Water Storage Tanks
Fiberglass Reinforced Plastic Tanks
Stainless Steel Tanks
Custom / Septic
مراحل المعالجة الاولية والثانوية والمتقدمة للصرف الصناعى

صور مختلفة
من وحدات وخزانات معالجة الصرف الصناعى
 التى تم تصميمها وتركيبها من قبل المجموعة

صور
 من خزانات الترسيب الكيميائى والفيزيائى
 لوحدات معالجة الصرف الصناعى
المصممة من قبل المحموعة



technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group

technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group




مياه رادياتير اخضر اللون
بريستول تو ايه
انتاج شركة بريستول تو ايه - دمياط الجديدة
مجموعة تكنولاب البهاء جروب

اسطمبات عبوات منتجات شركة بريستول تو ايه-دمياط الجديدة

مياه رادياتير خضراء فوسفورية

من انتاج شركة بريستول تو ايه 

بترخيص من مجموعة تكنولاب البهاء جروب


زيت فرامل وباكم

DOT3



شاطر | 
 

 calcium and water in boilers

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin
avatar

عدد المساهمات : 3587
تاريخ التسجيل : 15/09/2009
العمر : 50
الموقع : مصر

مُساهمةموضوع: calcium and water in boilers   السبت مايو 01, 2010 9:12 pm

Calcium - Ca
Chemical properties of calcium - Health effects of calcium - Environmental effects of calcium
Atomic number 20
Atomic mass 40.08 g.mol -1
Electronegativity according to Pauling 1.0
Mass volume 1.6 g.cm-3 at 20°C
Melting point 840 °C
Boiling point 1484 °C
Vanderwaals radius 0.197 nm
Ionic radius 0.099 nm
Isotopes 10
Electronic configuration [ Ar ] 4s2
Energy of first ionisation 589.6 kJ.mol -1
Energy of second ionisation 1145 kJ.mol -1
Standard potential - 2.87 V
Discovered Sir Humphrey Davy in 1808


Calcium
The chemical element Calcium (Ca), atomic number 20, is the fifth element and the third most abundant metal in the earth’s crust. The metal is trimorphic, harder than sodium, but softer than aluminium. A well as beryllium and aluminium, and unlike the alkaline metals, it doesn’t cause skin-burns. It is less chemically reactive than alkaline metals and than the other alkaline-earth metals.
Calcium ions solved in water form deposits in pipes and boilers and when the water is hard, that is, when it contains too much calcium or magnesium. This can be avoided with the water softeners. In the industry, metallic calcium is separated from the melted calcium chloride by electrolysis. This is obtained by treatment of carbonated minerals with chlorhydric acid, or like a sub product of the carbonates Solvay process.
In contact with air, calcium develops an oxide and nitride coating, which protects it from further corrosion. It burns in the air at a high temperature to produce nitride.
The commercially produced metal reacts easily with water and acids and it produces hydrogen which contains remarkable amounts of ammonia and hydrocarbides as impurities.
Applications
The metal is used in aluminium alloys for bearings, as a helper in the bismuth removal form lead, as well as in controlling graphitic carbon in melted iron. It is also used as a deoxidizer in the manufacture of many steels; as a reducing agent in the preparation of metals as chromium, thorium, zirconium and uranium, and as separating material for gaseous mixtures of nitrogen and argon. Calcium is an alloying used in the production of alluminium, beryllium, copper, lead and magnesium alloys. It is also used in making cements and mortar that are used in builldings.
The calcium oxide, CaO, is produced by thermal decomposition of carbonated minerals in furnaces, applying a continuous bed process. The oxide is used in high intensity light arcs (lime light) for its unusual spectral characteristics and as dehydrating industrial agent. The metallurgic industry extensively uses the oxide during the reduction of ferrous alloys.
The calcium oxide, Ca(OH)2, has many applications in which the hydroxyl ion is necessary. In the process of calcium hydroxide quenching, the volume of blown out lime [Ca(OH)2] expends to double the initial quantity of quick lime (CaO), fact that makes it useful to break down rocks or wood.
The quick lime is an excellent absorbent for the carbon dioxide, because it produces carbonate, which is very insoluble.
The calcium silicate, CaSi, prepared in an electric oven from lime, silica and reducing carbonated agents, is useful as a steel-deoxidizing agent. Calcium carbide, CaC2, is produces when heating up a mixture of lime and carbon at 3000ºC in an electric oven and it is an acetylate which produces acetylene by hydrolysis. The acetylene is the base material of a great number of important chemicals for the organic industrial chemistry.
The pure calcium carbonate occurs in two crystalline forms: calcite, hexagonal shaped, which possesses birrefringent properties, and aragonite, rhombohedric. The natural carbonates are the most abundant calcium minerals. The Iceland spar and the calcite are essentially pure carbonate forms, whilst the marble is impure and much more compact, reason why it can be polished. It’s very demanded as construction material. Although the calcium carbonate is very little soluble in water, it is quite soluble if the water contains dissolved carbon dioxide, for in these solutions it forms bicarbonate when dissolving. This fact explains the cave formation, where the lime stone deposits have been in contact with acid waters.
The calcium halogenures include phosphorescent fluoride, which is the calcium compound more abundant and with important applications in spectroscopy. The calcium chloride possesses, in the anhydric form, great deliquescence capacity, which makes it useful as industrial dehydrating agent and as sand whirl control factor in roads. Calcium hypochlorite (whitening powder) is produced in the industry when passing chlorine through a lime solution, and has been used as a whitening agent and as water purifier.
The dehydrated calcium sulphate is the mineral gypsum, constitutes the bigger portion of Portland concrete, and has been used to reduce the alkalinity of soils. Heating gypsum at high temperatures produces a calcium sulphate hemihydrate, which is sold with the commercial name of Parisian stucco.
Calcium in the environment
Calcium is the fifth element and the third most abundant metal in the earth’s crust. The calcium compounds account for 3.64% of the earth’s crust. The distribution of calcium is very wide; it is found in almost every terrestrial area in the world. This element is essential for the life of plants and animals, for it is present in the animal’s skeleton, in tooth, in the egg’s shell, in the coral and in many soils. Seawater contains 0.15% of calcium chloride.
Calcium cannot be found alone in nature. Calcium is found mostly as limestone, gypsum and fluorite. Stalagmites and stalactites contain calcium carbonate.
Calcium is always present in every plant, as it is essential for its growth. It is contained in the soft tissue, in fluids within the tissue and in the structure of every animal’s skeleton. The vertebrate’s bones contain calcium in the form of calcium fluoride, calcium carbonate and calcium phosphate.

Health effects of calcium
Calcium is the most abundand metal in the human body: is the main constituent of bones and theets and it has keys metabolic functions.
Calcium is sometimes referred to as lime. It is most commonly found in milk and milk products, but also in vegetables, nuts and beans. It is an essential component for the preservation of the human skeleton and teeth. It also assists the functions of nerves and muscles. The use of more than 2,5 grams of calcium per day without a medical necessity can lead to the development of kidney stones and sclerosis of kidneys and blood vessels.

A lack of calcium is one of the main causes of osteoporosis. Osteoporosis is a disease in which the bones become extremely porous, are subject to fracture, and heal slowly, occurring especially in women following menopause and often leading to curvature of the spine from vertebral collapse.
Unlike most of the people think, there is an intense biological activity inside our bones. They are being renewed constantly by new tissue replacing the old one. During childhood and adolescence, there’s more production of new tissue than destruction of the old one, but at some point, somewhere around the 30 or 35 years of age, the process is inverted and we start to loose more tissue than what we can replace. In women the process is accelerated after the menopause (he period marked by the natural and permanent cessation of menstruation, occurring usually between the ages of 45 and 55); this is because their bodies stop producing the hormone known as estrogen, one of which functions is to preserve the osseous mass.
Evidence suggests that we need a daily intake of 1,000 milligrams of calcium in order to preserve the osseous mass in normal conditions. This is both for man and pre-menopausic women. The recommended daily intake rises to 1,500 for menopausic woman.
The main calcium sources are the dairy products, but also nuts, some green vegetables like spinach, and cauliflower, beans, lentils…
Calcium works together with magnesium to create new osseous mass. Calcium should be taken together with magnesium in a 2:1 rate, that is to say, if you ingest 1000 mg of calcium, you should also ingest 500 mg of magnesium. Some magnesium sources in the diet are seafood, whole-grains, nuts, beans, wheat oats, seeds and green vegetables.
Other important measures to prevent osteoporosis are:
• Doing regular exercise (at least three times a week)
• Taking adequate amounts of manganese, folic acid, vitamin B6, vitamin B12, omega 3 (it aids calcium absorption and stimulates new osseous mass production) and vitamin D (it aids calcium absorption in the small intestine).
• Not abusing of sugar, saturated grease and animal proteins
• Not abusing of alcohol, caffeine, nor gaseous drinks
• Not smoking
Other triggers for osteoporosis are the hereditary factor and the stress.
Environmental effects of calcium
Calcium phosphide is very toxic to aquatic organisms.

Calcium (Ca) and water
Calcium and water: reaction mechanisms, environmental impact and health effects
Calcium occurs in water naturally. Seawater contains approximately 400 ppm calcium. One of the main reasons for the abundance of calcium in water is its natural occurrence in the earth's crust. Calcium is also a constituent of coral. Rivers generally contain 1-2 ppm calcium, but in lime areas rivers may contains calcium concentrations as high as 100 ppm.
Examples of calcium concentrations in water organisms: seaweed luctuca 800-6500 ppm (moist mass), oysters approximately 1500 ppm (dry mass).
In a watery solution calcium is mainly present as Ca2+ (aq), but it may also occur as CaOH+ (aq) or Ca(OH)2 (aq), or as CaSO4 in seawater.
Calcium is an important determinant of water harness, and it also functions as a pH stabilizer, because of its buffering qualities. Calcium also gives water a better taste.
In what way and in what form does calcium react with water?

Contrary to magnesium placed directly above calcium in the periodic chart, elementary calcium reacts with water at room temperature, according to the following reaction mechanism:
Ca (s) + 2H2O (g) -> Ca(OH)2 (aq) + H2 (g)

This reaction forms calcium hydroxide that dissolves in water as a soda, and hydrogen gas.
Other important calcium reaction mechanisms are erosion reactions. These usually occur when carbon dioxide is present. Under normal conditions calcium carbonate is water insoluble. When carbon dioxide is present carbonic acid is formed, affecting calcium compounds.
The reaction mechanism for carbon weathering is:

H2O + CO2 -> H2CO3 and CaCO3 + H2CO3 -> Ca(HCO3)2

And the total reaction mechanism:

CaCO3 (s) + CO2 (g) + 2H2O (l) -> Ca2+ (aq) + 2 HCO3- (aq)

The product is calcium hydrogen carbonate.
Solubility of calcium and calcium compounds

Elementary calcium reacts with water. Calcium compounds are more or less water soluble. Calcium carbonate has a solubility of 14 mg/L, which is multiplied by a factor five in presence of carbon dioxide. Calcium phosphate solubility is 20 mg/L, and that of calcium fluoride is 16 mg/L. Calcium chromate solubility is 170 g/L, and at 0oC calcium hypo chlorate solubility is 218 g/L. Solubility of other calcium compounds lies between the levels of these examples, for example calcium arsenate 140 mg/L, calcium hydroxide 1.3 g/L and calcium sulphate 2.7-8.8 g/L.
Why is calcium present in water?

Calcium is naturally present in water. It may dissolve from rocks such as limestone, marble, calcite, dolomite, gypsum, fluorite and apatite. Calcium is a determinant of water hardness, because it can be found in water as Ca2+ ions. Magnesium is the other hardness determinant.
Calcium is present in various construction materials, such as cement, brick lime and concrete. It is present in batteries, and is applied in plaster as calcium sulphate. The metal is applies for zirconium and thorium production. In steal industries calcium is applied as a blotter, and is added to aluminium, copper and lead alloys. Calcium can extract sulphur dioxide from industrial exhaust, and neutralize sulphuric acids before discharge. Other examples of calcium applications are calcium hypo chloride as bleach and for disinfection, calcium phosphate in glass and porcelain industries, calcium polysulphide and hydroxide as flocculants in wastewater treatment, and calcium fluoride as turbidity agent in enamel industries, in UV-spectroscopy, and as a raw material for fluid acid production. Calcium may also be applied for removal of carbon and sulphur from iron and iron alloys, and for dewatering oil. Limestone is applied as a paper filler, causing paper to colour whiter, and in plastics to improve stability.
Calcium often positively affects soil quality and various compounds are applied as a fertilizer. For example, CaCl2- or Ca(NO)3 solutions are applied in horticulture. Calcium oxide is a dehydrating molluscicide.

What are the environmental effects of calcium in water?
Calcium is a dietary requirement for all organisms apart from some insects and bacteria. Calcium carbonate is a building stone of skeletons of most marine organisms, and eye lenses. Calcium phosphate is required for bone structure and teeth structure of terrestrial organisms. Plants mainly contain calcium oxalate. Calcium storage in plants is about 1% of dry mass.
Calcium is largely responsible for water hardness, and may negatively influence toxicity of other compounds. Elements such as copper, lead and zinc are much more toxic in soft water.
In limed soils calcium may immobilize iron. This may cause iron shortages, even when plenty of iron is present in the soil.
Water hardness influences aquatic organisms concerning metal toxicity. In softer water membrane permeability in the gills is increased. Calcium also competes with other ions for binding spots in the gills. Consequently, hard water better protects fishes from direct metal uptake. pH values of 4.5-4.9 may harm salmon eggs and grown salmons, when the calcium, sodium and chlorine content is low.
Various calcium compounds may be toxic. The LD50 of rats for calcium arsenite is 20 mg/ kg body weight. Calcium carbide forms flammable ethyn when it comes in contact with water and is therefore considered hazardous.
Some environmental effects of water hardness include hardening of domestic equipment, because high temperatures cause carbonate hardness. This may dramatically decrease the lifespan of equipment, and causes an increase of domestic waste. Calcium carbonate interacts with detergents and cleansing agents. Complex formation causes a decrease in detergent efficiency, resulting in requirement for increased detergent application and softener purchases (see also magnesium and water).
Softening is often carried out by means of ion exchangers. These must be regenerates with kitchen salt, and therefore burden wastewater.
There are six stable calcium isotopes. Today, we know of eight instable calcium isotopes. 45Ca is highly radioactive and toxic.

What are the health effects of calcium in water?

Calcium is a dietary mineral that is present in the human body in amounts of about 1.2 kg. No other element is more abundant in the body. Calcium phosphate is a supporting substance, and it causes bone and tooth growth, together with vitamin D. Calcium is also present in muscle tissue and in the blood. It is required for cell membrane development and cell division, and it is partially responsible for muscle contractions and blood clotting. Calcium regulates membrane activity, it assists nerve impulse transfer and hormone release, stabilizes the pH of the body, and is an essential part of conception. In order to stimulate these body functions a daily intake of about 1000 mg of calcium is recommended for adults. This may be achieved by consuming dairy, grains and green vegetables.
Calcium carbonate works as a stomach acid remedy and may be applied to resolve digestive failure. Calcium lactate may aid the body during periods of calcium deficiency, and calcium chloride is a diuretic.
Hard water may assist in strengthening bones and teeth because of its high calcium concentration. It may also decrease the risk of heart conditions. Drinking water hardness must be above 8.4 odH. Caclium carbonate has a positive effect on lead water pipes, because it forms a protective lead(II)carbonate coating. This prevents lead from dissolving in drinking water, and thereby prevents it from entering the human body.
When one takes up large amounts of calcium this may negatively influence human health. The lethal dose of oral uptake is about 5-50 mg/ kg body weight. Metallic calcium corrodes the skin when it comes in contact with skin, eyes and mucous membranes.

Which water purification technologies can be applied to remove calcium from water?

Removing calcium and magnesium ions from water is carried out by water softeners. These are ion exchangers that usually contain Na+ ions, which are released and substituted by Ca2+ and Mg2+ ions.
Calcium compounds may be applied for wastewater treatment. Drinking water pH and hardness may be altered by means of calcium carbonate and calcium hydroxide.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://technolabelbahaagp.googoolz.com
 
calcium and water in boilers
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» water treatment methodes1
» Petit cour sur La cellule bactérienne
» boilers by hager mandour

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مجموعة تكنولاب البهاء جروب :: قسم معالجة وتنقية وتحاليل المياه :: معالجة الغلايات وانظمة البخار المكثف-
انتقل الى: