مجموعة تكنولاب البهاء جروب

تحاليل وتنقية ومعالجة المياه
 
الرئيسيةالبوابةمكتبة الصورس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول
تنظيف وتطهير وغسيل واعادة تاهيل الخزانات


معمل تكنولاب البهاء جروب
 للتحاليل الكيميائية والطبية
والتشخيص بالنظائر المشعة
 للمخدرات والهرمونات والسموم
 وتحاليل المياه

مجموعة
تكنولاب البهاء جروب
لتصميم محطات الصرف الصناعى والصحى
لمعالجة مياه الصرف الصناعى والصحى
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
دراسات علمية كيميائية



معالجة الغلايات وانظمة البخار المكثف
معالجة ابراج التبريد المفتوحة
معالجة الشيللرات
مجموعة تكنولاب البهاء جروب
اسنشاريين
كيميائيين/طبيين/بكترولوجيين
عقيد دكتور
بهاء بدر الدين محمود
رئيس مجلس الادارة
استشاريون متخصصون فى مجال تحاليل وتنقية ومعالجة المياه
متخصصون فى تصنيع وتصميم كيماويات
معالجة الصرف الصناعى والصحى
حسب كل مشكلة كل على حدة
تصنيع وتحضير كيماويات معالجة المياه الصناعية
مؤتمرات/اجتماعات/محاضرات/فريق عمل متميز
صور من وحدات معالجة المياه


technolab el-bahaa group
TECHNOLAB EL-BAHAA GROUP
EGYPT
FOR
WATER
TREATMENT/PURIFICATION/ANALYSIS
CONSULTANTS
CHEMIST/PHYSICS/MICROBIOLIGIST
 
INDUSTRIAL WATER
WASTE WATER
DRINKING WATER
TANKS CLEANING
 
CHAIRMAN
COLONEL.DR
BAHAA BADR EL-DIN
0117156569
0129834104
0163793775
0174041455

 

 

 

تصميم وانشاء محطات صرف صناعى/waste water treatment plant design

technolab el-bahaa group
egypt
We are a consultants in water treatment with our chemicals as:-
Boiler water treatment chemicals
Condensated steam treatment chemicals
Oxygen scavenger treatment chemicals
Ph-adjustment treatment chemicals
Antiscale treatment chemicals
Anticorrosion treatment chemicals
Open cooling tower treatment chemicals
Chillers treatment chemicals
Waste water treatment chemicals
Drinking water purification chemicals
Swimming pool treatment chemicals
Fuel oil improver(mazote/solar/benzene)
technolab el-bahaa group
egypt
We are consultants in extraction ,analysis and trading the raw materials of mines as:-
Rock phosphate
32%-30%-28%-25%
Kaolin
Quartez-silica
Talcum
Feldspae(potash-sodumic)
Silica sand
Silica fume
Iron oxid ore
Manganese oxid
Cement(42.5%-32.5%)
Ferro manganese
Ferro manganese high carbon

 

water treatment unit design


 

وكلاء لشركات تركية وصينية لتوريد وتركيب وصيانة الغلايات وملحقاتها
solo agent for turkish and chinese companies for boiler production/manufacture/maintance

 

وكلاء لشركات تركية وصينية واوروبية لتصنيع وتركيب وصيانة ابراج التبريد المفتوحة

 

تصميم وتوريد وتركيب الشيللرات
design/production/maintance
chillers
ابراج التبريد المفتوحة
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
قطاع توريد خطوط انتاج المصانع
 
نحن طريقك لاختيار افضل خطوط الانتاج لمصنعكم
سابقة خبرتنا فى اختيار خطوط الانتاج لعملاؤنا
 
1)خطوط انتاج العصائر الطبيعية والمحفوظة والمربات
2)خطوط انتاج الزيوت الطبيعية والمحفوظة
3)خطوط انتاج اللبن الطبيعى والمحفوظ والمبستر والمجفف والبودرة
4)خطوط تعليب وتغليف الفاكهة والخضروات
5)خطوط انتاج المواسير البلاستيك والبى فى سى والبولى ايثيلين
6)خطوط انتاج التراى كالسيوم فوسفات والحبر الاسود
7)خطوط انتاج الاسفلت بانواعه
Coolمحطات معالجة الصرف الصناعى والصحى بالطرق البيولوجية والكيميائية
9)محطات معالجة وتنقية مياه الشرب
10)محطات ازالة ملوحة البحار لاستخدامها فى الشرب والرى
11)الغلايات وخطوط انتاج البخار الساخن المكثف
12)الشيللرات وابراج التبريد المفتوحة وخطوط انتاج البخار البارد المكثف
 
للاستعلام
مجموعة تكنولاب البهاء جروب
0117156569
0129834104
0163793775
 
القاهرة-شارع صلاح سالم-عمارات العبور-عمارة 17 ب
فلا تر رملية/كربونية/زلطيه/حديدية

وحدات سوفتنر لازالة عسر المياه

مواصفات مياه الشرب
Drinking water
acceptable
values

50

colour

acceptable

Taste

nil

Odour

6.5-9.2

ph

 

1 mg/dl

pb

5 mg/dl

as

50 mg/dl

cn

10 mg/dl

cd

0-100mg/dl

hg

8 mg/dl

f

45 mg/dl

N02

1 mg/dl

Fe

5 mg/dl

Mn

5.1 mg/dl

Cu

200 mg/dl

Ca

150 mg/dl

Mg

600 mg/dl

Cl

400 mg/dl

S04

200 mg/dl

Phenol

15 mg/dl

zn

 

 

الحدود المسموح به
ا لملوثات الصرف الصناعى
 بعد المعالجة
Acceptable
values
treated wate water
7-9.5

ph

25-37 c

Temp

40 mg/dl

Suspended solid

35 mg/dl

bod

3 mg/dl

Oil & grase

0.1 mg/dl

hg

0.02 mg/dl

cd

0.1 mg/dl

cn

0.5mg/dl

phenol

1.5 ds/m

conductivity

200 mg/dl

na

120 mg/dl

ca

56 mg/dl

mg

30 mg/dl

k

200 mg/dl

cl

150 mg/dl

S02

0.75 mg/dl

Fe

0.2 mg/dl

Zn

0.5 mg/dl

Cu

0.03 mg/dl

Ni

0.09 mg/dl

Cr

0.53 mg/dl

لb

0.15 mg/dl

pb

 





pipe flocculator+daf
plug flow flocculator
lamella settels

محطات تحلية مياه البحر بطريقة التقطير الومضى على مراحل
MSF+3.jpg (image)
محطات التقطير الومضى لتحلية مياه البحر2[MSF+3.jpg]
some of types of tanks we services
انواع الخزانات التى يتم تنظيفها
ASME Specification Tanks
Fuel Tanks
Storage Tanks
Custom Tanks
Plastic Tanks
Tank Cleaning Equipment
Double Wall Tanks
Septic Tanks
Water Storage Tanks
Fiberglass Reinforced Plastic Tanks
Stainless Steel Tanks
Custom / Septic
مراحل المعالجة الاولية والثانوية والمتقدمة للصرف الصناعى

صور مختلفة
من وحدات وخزانات معالجة الصرف الصناعى
 التى تم تصميمها وتركيبها من قبل المجموعة

صور
 من خزانات الترسيب الكيميائى والفيزيائى
 لوحدات معالجة الصرف الصناعى
المصممة من قبل المحموعة



technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group

technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group




مياه رادياتير اخضر اللون
بريستول تو ايه
انتاج شركة بريستول تو ايه - دمياط الجديدة
مجموعة تكنولاب البهاء جروب

اسطمبات عبوات منتجات شركة بريستول تو ايه-دمياط الجديدة

مياه رادياتير خضراء فوسفورية

من انتاج شركة بريستول تو ايه 

بترخيص من مجموعة تكنولاب البهاء جروب


زيت فرامل وباكم

DOT3



شاطر | 
 

 corrosion in boilers

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin
avatar

عدد المساهمات : 3587
تاريخ التسجيل : 15/09/2009
العمر : 50
الموقع : مصر

مُساهمةموضوع: corrosion in boilers   السبت مايو 01, 2010 10:11 pm

Corrosion in boilers
Corrosion is the reversion of a metal to its ore form. Iron, for example, reverts to iron oxide as the result of corrosion. The process of corrosion, however is a complex electro chemical reaction and it takes many forms. Corrosion may produce general attach over a large metal surface or it may result in pinpoint penetration of metal. Corrosion is a relevant problem caused by water in boilers. Corrosion can be of widely varying origin and nature due to the action of dissolved oxygen, to corrosion currents set up as a result of heterogeneities on metal surfaces, or to the iron being directly attacked by the water.
While basic corrosion in boilers may be primarily due to reaction of the metal with oxygen, other factors such as stresses, acid conditions, and specific chemical corrodents may have an important influence and produce different forms of attack. It is necessary to consider the quantity of the various harmful substances that can be allowed in the boiler water without risk of damage to the boiler. Corrosion may occur in the feed-water system as a result of low pH water and the presence of dissolved oxygen and carbon dioxide.
Starting form these figures, and allowing the amount that can be blown down, the permitted concentration in the make-up water is thus defined.
Corrosion is caused principally by complex oxide-slag with low melting points. High temperature corrosion can proceed only if the corroding deposit is in the liquid phase and the liquid is in direct contact with the metal. Deposits also promote the transport of oxygen to the metal surface.
Corrosion in the boiler proper generally occurs when the boiler water alkalinity is low or when the metal is exposed to oxygen bearing water either during operation or idle periods. High temperatures and stresses in the boiler metal tend to accelerate the corrosive mechanisms. In the steam and condensate system corrosion is generally the result of contamination with carbon dioxide and oxygen. Specific contaminants such as ammonia or sulphur bearing gases may increase attack on copper alloys in the system.
Corrosion is caused by the combination of oxide layer fluxing and continuous oxidation by transported oxygen.


Cracking in boiler metal may occur by two different mechanisms. In the first mechanism, cyclic stresses are created by rapid heating and cooling and are concentrated at points where corrosion has roughened or pitted the metal surface. This is usually associated with improper corrosion prevention. The second type of corrosion fatigue cracking occurs in boilers with properly treated water. In these cases corrosion fatigue is probably a misnomer. These cracks often originate where a dense protective oxide film covers the metal surfaces and cracking occurs from the action of applied cyclic stresses. Corrosion fatigue cracks are usually thick, blunt and cross the metal grains. They usually start at internal tube surfaces and are most often circumferential on the tube.
Corrosion control techniques vary according to the type of corrosion encountered. Major methods include maintenance of the proper pH, control of oxygen, control of deposits, and reduction of stresses trough design and operational practices.
Deaeration and recently the use of membrane contractors are the best and most diffused ways to avoid corrosion removing the dissolved gasses (mainly O2 and CO2).
For further information about the different types of corrosion check the following web pages:
• Galvanic corrosion
• Caustic corrosion
• Acidic corrosion
• Hydrogen embrittlement
• Oxygen attack
• Carbon dioxide attack
Protection of steel in a boiler system depends on temperature, pH, and oxygen content. Generally, higher temperatures, high or low pH levels and higher oxygen concentrations increase steel corrosion rates. Mechanical and operation factors such as velocities, metal stresses, and severity of service can strongly influence corrosion rates. Systems vary in corrosion tendencies and should be evaluated individually.



Caustic corrosion in boilers
Galvanic corrosion
Caustic corrosion
Acidic corrosion
Hydrogen embrittlement
Oxygen attack
Carbon dioxide attack
Concentration of caustic (NaOH) can occur as a result of steam blanketing (which allow salts to concentrate on boiler metal surface) or by localized boiling beneath porous deposits on tube surface. Caustic corrosion occurs when caustic is concentrated and dissolves the protective magnetite (Fe3O4) layer, causing a loss of base metal and eventual failure.
The following conditions appear to be necessary for this type of cracking to occur :


1. The metal must be stressed,
2. the boiler-water must contain caustic,
3. at least a trace of silica must be present in the boiler-water, and
4. some mechanisms, such as a slight leak, must be present to allow the boiler water to concentrate on the stressed metal.
Stem blanketing is a condition that occurs when a steam layer forms between the boiler water and the tube wall. Under this condition, insufficient water reaches the tube surface for efficient heat transfer. The water that reaches the overheated boiler wall is rapidly vaporized, leaving behind a concentrated caustic solution, which is corrosive.
Boiler feed water systems using demineralized or evaporated make up or pure condensate may be protected from caustic attack through coordinated phosphate/pH control. Phosphate buffers the boiler water, reducing the chance of large pH changes due to the development of high caustic concentrations. Excess caustic combines with disodium phosphate and forms trisodium phosphate, by the following reaction:
Na2HPO4 + NaOH è Na3PO4 + H2O
This results in the prevention of caustic buildup beneath deposits or within a crevice where leakage is occurring.



Acidic corrosion in boilers

Galvanic corrosion
Caustic corrosion
Acidic corrosion
Hydrogen embitterment
Oxygen attack
Carbon dioxide attack
Low make up feed water pH can cause serious acid attack on metal surfaces in the preboiler and boiler system. Feed water can also become acidic from contamination of the system (process contamination of condensate or cooling water contamination from condensers).
Acidic corrosion can also be caused by chemical cleaning operations (overheating of the cleaning solution, excessive exposure of metal to cleaning agent, high cleaning agent concentration).
In the boiler and feed water system, acidic attack can take the form of general thinning, or it can be localized at areas of high stress.




Oxygen attack in boilers
Galvanic corrosion
Caustic corrosion
Acidic corrosion
Hydrogen embrittlement
Oxygen attack
Carbon dioxide attack
Without proper mechanical and chemical deaeration, oxygen in the feed water enters the boiler. Much is flashed off with the steam; the remainder can attack boiler metal. Oxygen in water produces pitting that is very severe because of its localized nature. Water containing ammonia, particularly in the presence of oxygen, readily attacks copper and copper bearing alloys. The resulting corrosion leads to deposits on boiler heat transfer surfaces and reduces efficiency and reliability.
Oxygen is highly corrosive when present in hot water. Even small concentrations can cause serious problems: iron oxide generated by the corrosion can produce iron deposits in the boiler. Oxygen corrosion may be highly localized or may cover an extensive area. Oxygen attack is an electrochemical process that can be described by the following reactions:

Anode: Fe è Fe2+ + 2e-
Cathode: ½ O2 + H2O + 2e- è 2 OH-
Overall: Fe + ½ O2 + H2O è Fe(OH)2
In this reaction a temperature rise provides enough additional energy to accelerate reactions at the metal surfaces, resulting in a rapid and severe corrosion.
The acceptable dissolved oxygen level for any system depends on may factors, such as feed water temperature, pH, flow rate, dissolved solids content, and the metallurgy and physical condition of the system. In general, the limit value of oxygen in make up water can be stared 0.10 mg/kg
For a complete protection from oxygen corrosion, a chemical scavenger is required following mechanical deaeration. Membrane contractors are also a possibility.


Carbon dioxide attack in boilers
Galvanic corrosion
Caustic corrosion
Acidic corrosion
Hydrogen embrittlement
Oxygen attack
Carbon dioxide attack
Carbon dioxide exists in aqueous solutions as free carbon dioxide and the combine forms of carbonate and bicarbonate ions. Corrosion is the principal effect of dissolved carbon dioxide. The gas will dissolve in water, producing corrosive carbonic acid:
H2O + CO2 çè H2CO3 çè H+ + HCO3-
The low pH resulting from this reaction also enhances the corrosive effect of oxygen.


In boiler systems, corrosion resulting from carbon dioxide is most often encountered in the condensate system. Because feed water deaeration normally removes carbon dioxide from the boiler feed water, the presence of the gas in condensate is typically due to carbonate and bicarbonate decomposition under boiler conditions. For an approximation is estimated that feed water with a total alkalinity of 100 mg/l as calcium carbonate could be expected to generate a carbon dioxide level of 79 mg/l in the steam (alkalinity multiplied by a factor 0.79). Such a high carbon dioxide level would create a very corrosive condensate.
Carbon dioxide corrosion is frequently encountered in condensate systems and less commonly in water distribution systems.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://technolabelbahaagp.googoolz.com
 
corrosion in boilers
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» boilers by hager mandour

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مجموعة تكنولاب البهاء جروب :: قسم معالجة وتنقية وتحاليل المياه :: معالجة الغلايات وانظمة البخار المكثف-
انتقل الى: