مجموعة تكنولاب البهاء جروب

تحاليل وتنقية ومعالجة المياه
 
الرئيسيةالبوابةمكتبة الصورس .و .جبحـثالأعضاءالمجموعاتالتسجيلدخول
تنظيف وتطهير وغسيل واعادة تاهيل الخزانات


معمل تكنولاب البهاء جروب
 للتحاليل الكيميائية والطبية
والتشخيص بالنظائر المشعة
 للمخدرات والهرمونات والسموم
 وتحاليل المياه

مجموعة
تكنولاب البهاء جروب
لتصميم محطات الصرف الصناعى والصحى
لمعالجة مياه الصرف الصناعى والصحى
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
دراسات علمية كيميائية



معالجة الغلايات وانظمة البخار المكثف
معالجة ابراج التبريد المفتوحة
معالجة الشيللرات
مجموعة تكنولاب البهاء جروب
اسنشاريين
كيميائيين/طبيين/بكترولوجيين
عقيد دكتور
بهاء بدر الدين محمود
رئيس مجلس الادارة
استشاريون متخصصون فى مجال تحاليل وتنقية ومعالجة المياه
متخصصون فى تصنيع وتصميم كيماويات
معالجة الصرف الصناعى والصحى
حسب كل مشكلة كل على حدة
تصنيع وتحضير كيماويات معالجة المياه الصناعية
مؤتمرات/اجتماعات/محاضرات/فريق عمل متميز
صور من وحدات معالجة المياه


technolab el-bahaa group
TECHNOLAB EL-BAHAA GROUP
EGYPT
FOR
WATER
TREATMENT/PURIFICATION/ANALYSIS
CONSULTANTS
CHEMIST/PHYSICS/MICROBIOLIGIST
 
INDUSTRIAL WATER
WASTE WATER
DRINKING WATER
TANKS CLEANING
 
CHAIRMAN
COLONEL.DR
BAHAA BADR EL-DIN
0117156569
0129834104
0163793775
0174041455

 

 

 

تصميم وانشاء محطات صرف صناعى/waste water treatment plant design

technolab el-bahaa group
egypt
We are a consultants in water treatment with our chemicals as:-
Boiler water treatment chemicals
Condensated steam treatment chemicals
Oxygen scavenger treatment chemicals
Ph-adjustment treatment chemicals
Antiscale treatment chemicals
Anticorrosion treatment chemicals
Open cooling tower treatment chemicals
Chillers treatment chemicals
Waste water treatment chemicals
Drinking water purification chemicals
Swimming pool treatment chemicals
Fuel oil improver(mazote/solar/benzene)
technolab el-bahaa group
egypt
We are consultants in extraction ,analysis and trading the raw materials of mines as:-
Rock phosphate
32%-30%-28%-25%
Kaolin
Quartez-silica
Talcum
Feldspae(potash-sodumic)
Silica sand
Silica fume
Iron oxid ore
Manganese oxid
Cement(42.5%-32.5%)
Ferro manganese
Ferro manganese high carbon

 

water treatment unit design


 

وكلاء لشركات تركية وصينية لتوريد وتركيب وصيانة الغلايات وملحقاتها
solo agent for turkish and chinese companies for boiler production/manufacture/maintance

 

وكلاء لشركات تركية وصينية واوروبية لتصنيع وتركيب وصيانة ابراج التبريد المفتوحة

 

تصميم وتوريد وتركيب الشيللرات
design/production/maintance
chillers
ابراج التبريد المفتوحة
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
قطاع توريد خطوط انتاج المصانع
 
نحن طريقك لاختيار افضل خطوط الانتاج لمصنعكم
سابقة خبرتنا فى اختيار خطوط الانتاج لعملاؤنا
 
1)خطوط انتاج العصائر الطبيعية والمحفوظة والمربات
2)خطوط انتاج الزيوت الطبيعية والمحفوظة
3)خطوط انتاج اللبن الطبيعى والمحفوظ والمبستر والمجفف والبودرة
4)خطوط تعليب وتغليف الفاكهة والخضروات
5)خطوط انتاج المواسير البلاستيك والبى فى سى والبولى ايثيلين
6)خطوط انتاج التراى كالسيوم فوسفات والحبر الاسود
7)خطوط انتاج الاسفلت بانواعه
Coolمحطات معالجة الصرف الصناعى والصحى بالطرق البيولوجية والكيميائية
9)محطات معالجة وتنقية مياه الشرب
10)محطات ازالة ملوحة البحار لاستخدامها فى الشرب والرى
11)الغلايات وخطوط انتاج البخار الساخن المكثف
12)الشيللرات وابراج التبريد المفتوحة وخطوط انتاج البخار البارد المكثف
 
للاستعلام
مجموعة تكنولاب البهاء جروب
0117156569
0129834104
0163793775
 
القاهرة-شارع صلاح سالم-عمارات العبور-عمارة 17 ب
فلا تر رملية/كربونية/زلطيه/حديدية

وحدات سوفتنر لازالة عسر المياه

مواصفات مياه الشرب
Drinking water
acceptable
values

50

colour

acceptable

Taste

nil

Odour

6.5-9.2

ph

 

1 mg/dl

pb

5 mg/dl

as

50 mg/dl

cn

10 mg/dl

cd

0-100mg/dl

hg

8 mg/dl

f

45 mg/dl

N02

1 mg/dl

Fe

5 mg/dl

Mn

5.1 mg/dl

Cu

200 mg/dl

Ca

150 mg/dl

Mg

600 mg/dl

Cl

400 mg/dl

S04

200 mg/dl

Phenol

15 mg/dl

zn

 

 

الحدود المسموح به
ا لملوثات الصرف الصناعى
 بعد المعالجة
Acceptable
values
treated wate water
7-9.5

ph

25-37 c

Temp

40 mg/dl

Suspended solid

35 mg/dl

bod

3 mg/dl

Oil & grase

0.1 mg/dl

hg

0.02 mg/dl

cd

0.1 mg/dl

cn

0.5mg/dl

phenol

1.5 ds/m

conductivity

200 mg/dl

na

120 mg/dl

ca

56 mg/dl

mg

30 mg/dl

k

200 mg/dl

cl

150 mg/dl

S02

0.75 mg/dl

Fe

0.2 mg/dl

Zn

0.5 mg/dl

Cu

0.03 mg/dl

Ni

0.09 mg/dl

Cr

0.53 mg/dl

لb

0.15 mg/dl

pb

 





pipe flocculator+daf
plug flow flocculator
lamella settels

محطات تحلية مياه البحر بطريقة التقطير الومضى على مراحل
MSF+3.jpg (image)
محطات التقطير الومضى لتحلية مياه البحر2[MSF+3.jpg]
some of types of tanks we services
انواع الخزانات التى يتم تنظيفها
ASME Specification Tanks
Fuel Tanks
Storage Tanks
Custom Tanks
Plastic Tanks
Tank Cleaning Equipment
Double Wall Tanks
Septic Tanks
Water Storage Tanks
Fiberglass Reinforced Plastic Tanks
Stainless Steel Tanks
Custom / Septic
مراحل المعالجة الاولية والثانوية والمتقدمة للصرف الصناعى

صور مختلفة
من وحدات وخزانات معالجة الصرف الصناعى
 التى تم تصميمها وتركيبها من قبل المجموعة

صور
 من خزانات الترسيب الكيميائى والفيزيائى
 لوحدات معالجة الصرف الصناعى
المصممة من قبل المحموعة



technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group

technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group




مياه رادياتير اخضر اللون
بريستول تو ايه
انتاج شركة بريستول تو ايه - دمياط الجديدة
مجموعة تكنولاب البهاء جروب

اسطمبات عبوات منتجات شركة بريستول تو ايه-دمياط الجديدة

مياه رادياتير خضراء فوسفورية

من انتاج شركة بريستول تو ايه 

بترخيص من مجموعة تكنولاب البهاء جروب


زيت فرامل وباكم

DOT3



شاطر | 
 

  General Chemistry of Fenton's Reagent/طريقة فينتون لمعالجة الصرف الصناعى

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin
avatar

عدد المساهمات : 3513
تاريخ التسجيل : 15/09/2009
العمر : 49
الموقع : مصر

مُساهمةموضوع: General Chemistry of Fenton's Reagent/طريقة فينتون لمعالجة الصرف الصناعى   السبت مارس 17, 2012 2:54 am

Fenton's Reagent

General Chemistry of Fenton's Reagent

Fenton's Reagent General Chemistry

by

technolab el-bahaa group

general.dr

bahaa badr

Fe 2+ + H2O2 → Fe 3+ + OH - + . OH

Fe 3+ + H2O2 → Fe 2+ + . OOH + H+

The procedure requires:

adjusting the wastewater to pH 3-5;

adding the iron catalyst (as a solution of FeSO4);

adding slowly the H2O2.

If the pH is too high, the iron precipitates as Fe(OH)3 and catalytically decomposes the H2O2 to oxygen -- potentially creating a hazardous situation.

Reaction rates with Fenton’s Reagent are generally limited by the rate of .

OH generation (i.e., concentration of iron catalyst) and less so by the specific wastewater being treated.

Typical Fe:H2O2 ratios are 1:5-10 wt/wt, though iron levels < 25-50 mg/L can require excessive reaction times (10-24 hours).

This is particularly true where the oxidation products (organic acids) sequester the iron and remove it from the catalytic cycle.

Fenton’s Reagent is most effective as a pretreatment tool, where COD’s are > 500 mg/L.

This is due to the loss in selectivity as pollutant levels decrease:

. OH + H2O2 → . O2H + H2O

. OH + Fe 3+ → Fe 2+ + OH -

In addition to free radical scavengers, the process is inhibited by (iron) chelants such as phosphates, EDTA, formaldehyde, and citric/oxalic acids.

Because of the sensitivity of Fenton’s Reagent to different wastewaters, it is recommended that the reaction always be characterized through laboratory treatability tests before proceeding to plant scale.

Hydroxyl radical reactivity

The hydroxyl radical is one of the most reactive chemical species known, second only to elemental fluorine in its reactivity .


Reactive Species Relative Oxidation Power (Cl2=1.0)

Flourine 2.23

Hydroxyl radical 2.06

Atomic oxygen (singlet) 1.78

Hydrogen peroxide 1.31

Perhydroxyl radical 1.25

Permanganate 1.24

Hypobromous acid 1.17

Chlorine dioxide 1.15

Hypochlorous acid 1.1

Hypiodous acid 1.07

Chlorine 1

Bromine 0.8

Iodine 0.54



The chemical reactions of the hydroxyl radical in water are of four types:


Addition: . OH + C6H6 → (OH)C6H6 .

where the hydroxyl radical adds to an unsaturated compound, aliphatic or aromatic, to form a free radical product (cyclohexadienyl radical shown above).

Hydrogen Abstraction: . OH + CH3OH → . CH2OH + H2O

where an organic free radical and water are formed.

Electron Transfer: . OH + [Fe(CN)6] 4- → [Fe(CN)6] 3- + OH -

where ions of a higher valence state are formed, or an atom or free radical if a mononegative ion is oxidized.

Radical Interaction: . OH + . OH → H2O2

where the hydroxyl radical reacts with another hydroxyl radical, or with an unlike radical, to combine or to disproportionate to form a stable product.

In applying Fenton’s Reagent for industrial waste treatment, the conditions of the reaction are adjusted so that first two mechanisms (hydrogen abstraction and oxygen addition) predominate.

Typical rates of reaction between the hydroxyl radical and organic materials are 109 - 1010 k (M-1 s-1).

Effect of Iron Concentration

In the absence of iron, there is no evidence of hydroxyl radical formation when, for example, H2O2 is added to a phenolic wastewater (i.e., no reduction in the level of phenol occurs).

As the concentration of iron is increased, phenol removal accelerates until a point is reached where further addition of iron becomes inefficient.

This feature (an optimal dose range for iron catalyst) is characteristic of Fenton’s Reagent, although the definition of the range varies between wastewaters.

Three factors typically influence its definition:

A minimal threshold concentration of 3-15 mg/L Fe which allows the reaction to proceed within a reasonable period of time regardless of the concentration of organic material;

A constant ratio of Fe:substrate above the minimal threshold, typically 1 part Fe per 10-50 parts substrate, which produces the desired end products.

Note that the ratio of Fe:substrate may affect the distribution of reaction products;

A supplemental aliquot of Fe which saturates the chelating properties in the wastewater, thereby availing unsequestered iron to catalyze the formation of hydroxyl radicals.

Iron dose may also be expressed as a ratio to H2O2 dose. Typical ranges are 1 part Fe per 5-25 parts H2O2 (wt/wt).

Effect of Iron Type (Ferrous or Ferric)

For most applications, it does not matter whether Fe2+ or Fe3+ salts are used to catalyze the reaction -- the catalytic cycle begins quickly if H2O2 and organic material are in abundance.

However, if low doses of Fenton’s Reagent are being used (e.g., < 10-25 mg/L H2O2), some research suggests ferrous iron may be preferred. Neither does it matter whether a chloride or sulfate salt of the iron is used, although with the former, chlorine may be generated at high rates of application.

It is also possible to recycle the iron following the reaction.

This can be done by raising the pH, separating the iron floc, and re-acidifying the iron sludge.

There have been some recent developments in supported catalysts that facilitate iron recovery and reuse.

Effect of H2O2 Concentration

Because of the indiscriminate nature by which hydroxyl radicals oxidize organic materials, it is important to profile the reaction in the laboratory for each waste to be treated.

For example, in a typical application the following series of reactions will occur:

Substrate → Oxidized

Intermediate

"A" → Oxidized

Intermediate

"B" → Oxidized

Intermediate

"C" → Oxidized

Intermediate

"D" → Oxidized

Intermediate

"E" → CO2



Each transformation in this series has its own reaction rate and, as the case of phenolics illustrates, there may occur build-up of an undesirable intermediate (quinones), which requires sufficient H2O2 to be added to push the reaction beyond that point.

This is frequently seen when pretreating a complex organic wastewater for toxicity reduction.

As the H2O2 dose is increased, a steady reduction in COD may occur with little or no change in toxicity until a threshold is attained, whereupon further addition of H2O2 results in a rapid decrease in wastewater toxicity.

Effect of Temperature

The rate of reaction with Fenton’s Reagent increases with increasing temperature, with the effect more pronounced at temperatures < 20 deg-C. However, as temperatures increase above 40-50 deg-C, the efficiency of H2O2 utilization declines.

This is due to the accelerated decomposition of H2O2 into oxygen and water.

As a practical matter, most commercial applications of Fenton’s Reagent occur at temperatures between 20-40 deg-C.

Applications of Fenton’s Reagent for pretreating high strength wastes may require controlled or sequential addition of H2O2 to moderate the rise in temperature which occurs as the reaction proceeds.

This should be expected when H2O2 doses exceed 10-20 g/L. Moderating the temperature is important not only for economic reasons, but for safety reasons as well.

Effect of pH

The effect of pH on reaction efficiency is illustrated below:

The optimal pH occurs between pH 3 and pH 6.

The drop in efficiency on the basic side is attributed to the transition of iron from a hydrated ferrous ion to a colloidal ferric species.

In the latter form, iron catalytically decomposes the H2O2 into oxygen and water, without forming hydroxyl radicals.

There have been some recent developments using nonradical scavenging sequestering agents (e.g., NTA and gallic acid) to extend the useful pH range to pH 8-9, but no commercial applications are known.

The drop in efficiency on the acid side is less dramatic given the logarithmic function of pH, and is generally a concern only with high application rates.

A second aspect of pH deals with its shift as the reaction progresses. Provided an initial wastewater pH of 6.0, the following profile is typical of Fenton reactions.

The first inflection is caused by the addition of FeSO4 catalyst which typically contains residual H2SO4.

A second, more pronounced drop in pH occurs as the H2O2 is added, and continues gradually at a rate which is largely dependent on catalyst concentration.

This drop in pH is attributed to the fragmenting of organic material into organic acids.

This pH change is often monitored to ensure that the reaction is progressing as planned -- the absence of such a pH decrease may mean that the reaction is inhibited and that a potentially hazardous build-up of H2O2 is occurring within the reaction mixture.


In highly concentrated waste streams (>10 g/L COD), it may be necessary to perform the oxidation in steps, readjusting the pH upwards to pH 4-5 after each step so as to prevent low pH from inhibiting the reaction.

Effect of Reaction Time

The time needed to complete a Fenton reaction will depend on the many variables discussed above, most notably catalyst dose and wastewater strength.

For simple phenol oxidation (less than ca. 250 mg/L), typical reaction times are 30 - 60 minutes.

For more complex or more concentrated wastes, the reaction may take several hours.

In such cases, performing the reaction in steps (adding both iron and H2O2) may be more effective (and safer) than increasing the initial charges.

Determining the completion of the reaction may prove troublesome.

The presence of residual H2O2 will interfere with many wastewater analyses.

Residual H2O2 may be removed by raising the pH to e.g., pH 7-10, or by neutralizing with bisulfite solution.

Often, observing color changes can used to assess the reaction progression.

Wastewaters will typically darken upon H2O2 addition and clear up as the reaction reaches completion.

Effect of Post Treatment

As a result of degrading complex organic materials into organic acid fragments, the pre-oxidized effluent is generally more amenable to conventional treatment, e.g., flocculation and biotreatment.

The presence of iron in the reaction mixture makes it particularly suited to subsequent lime flocculation.

In many cases, it may be possible to remove up to 80% of the wastewater COD through a combination of Fenton’s Reagent and lime flocculation.

Significantly, this may be achieved with an H2O2 dose of 50-75% of the stoichiometry.
Process Equipment

Historically, Fenton’s Reagent has been applied in batch mode.

Today, however, it is being used in both continuous and sequential batch processes.

A typical batch operation would consist of chemical storage and dosing modules (for H2O2, FeSO4, acid, and lime/NaOH); a primary reactor and (optional) holding tank; a solids dewatering device (optional); and miscellaneous temperature and pH controls.

The materials of construction for the reactor and holding tank are typically Types 304 or 316 stainless steel, while those for the chemical storage systems may also be HDPE.

Packaged Fenton’s systems are available from some equipment providers, or US Peroxide can provide you with engineering guidance on custom designs and retrofits.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
معاينة صفحة البيانات الشخصي للعضو http://technolabelbahaagp.googoolz.com
 
General Chemistry of Fenton's Reagent/طريقة فينتون لمعالجة الصرف الصناعى
استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» mcq in the general pharmacology.

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مجموعة تكنولاب البهاء جروب :: قسم معالجة وتنقية وتحاليل المياه :: معالجة الصرف الصناعى والصحى-
انتقل الى: